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Abstract. We report on a theoretical analysis of terahertz 
(THz-) field induced nonlinear dynamics of electrons in 
a semiconductor superlattice that are capable to perform 
Bloch oscillations. Our results suggest that for a strong 
THz-field a dc voltage should be generated. We have 
analyzed the real-time dynamics using a balance equation 
approach to describe the electron transport in a superla- 
ttice miniband. Taking account of both Bloch oscillations 
of electrons in a superlattice miniband and dissipation, we 
studied the influence of a strong THz-field on currently 
available superlattices at room temperature. We found 
that a THz-field can lead to a negative conductance result- 
ing in turn in a THz-field induced dc voltage, and that the 
voltage per superlattice period should show, for varying 
amplitue of the THz-field, a form of twisted plateaus with 
the middle points being with high precision equal to the 
photon energy divided by the electron charge. We show 
that the THz-field can cause fast switching from the zero- 
voltage to the finite voltage state, and that in the finite 
voltage state dynamic localization of the electrons in 
a miniband occurs. 

PACS" 73.20 Dx; 73.40 Gk 

I. Introduction 

On the basis of Bloch's description [1] of the motion of 
electrons in a periodic potential superimposed with a dc 
electric field, Zener showed [2] that Bloch oscillations can 
occur due to Bragg reflection of electrons. Esaki and Tsu 
[3] proposed to prepare superlattices of different semicon- 
ductor materials to realize a system that allows to observe 
Bloch oscillations. They also predicted [-3] that the cur- 
rent-voltage characteristic of a superlattice should show 
a negative differential conductance if the Bloch oscilla- 
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tions are sufficiently weakly damped, namely, when elec- 
trons perform quasi-ballistic motion, with an average 
scattering frequency smaller than the Bloch frequency of 
the electrons. 

Recently, Bloch oscillations have been observed in 
GaAs/GaA1As superlattices, for free-electron motion 
along the superlattice axes. The occurrence of Bloch oscil- 
lations has been concluded from the observation of nega- 
tive differential conductance [4-7], from studies of the 
decay of coherent nonequilibrium states prepared by in- 
terband transitions using femtosecond visible light pulses 
[8, 9], and by measuring the response to a THz-field [10]. 
The experiments demonstrate the possibility to observe 
fundamental quantum phenomena in tailored artificial 
crystals. 

Various theoretical studies treated the influence of 
a strong high-frequency electric field (i.e. of a field with 
a frequency of the order of the Bloch frequency, assumed 
to be of the order of the scattering frequency) on the Bloch 
oscillations and the electron transport in superlattices. In 
particular, it has been shown [11, 12] that multiphoton 
absorption and emission processes can occur in the elec- 
tronic system, resulting, under appropriate conditions, in 
a negative conductance G = iac/Va~ of a superlattice where 
ia~ is the dc current flowing through the superlattice and 
Vac the dc voltage across the superlattice; in case of a nega- 
tive conductance (G < 0) the current flow is opposite to an 
applied dc electric field; see also Refs. [13 15]. The invest- 
igations [13-15] predict, moreover, that irradiation of 
a superlattice can result in a negative conductance at zero 
dc voltage and zero dc current with spontaneous switch- 
ing of the system from an unstable state to a stable state 
that has a finite value of the dc voltage but zero dc current. 

From a quasi classical treatment [13-15] it was pre- 
dicted that spontaneous switching can occur when the 
high-frequency field causes a dynamic localization of the 
free electrons, and that the condition for dynamic localiza- 
tion is Jo(eEo~a/hco)~ O, where E~ is the amplitude of 
a monochromatic ac field of frequency co in the superla- 
trice, a the superlattice period, Jo(x) the Bessel function 
of zeroth order (e = elementary charge, h = Planck's 
constant). Under the conditition of dynamic localization 
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the free-electron motion in a miniband is frozen in as 
a consequence of frequency modulation of the Bloch oscil- 
lations of the electrons by the ac field. Various quantum 
mechanical studies for ballistic electron motion in a super- 
lattice miniband under the action of a strong driving ac 
electric field [16-22] have delivered the same criterion for 
dynamic localization. In both the quasi classical and the 
quantum mechanical studies [13-22] electron scattering 
has not been rigourously taken into account. 

Theoretical studies of undamped [11] and weakly 
damped [12] Bloch oscillations suggest that under the 
condition of dynamic localization new stable states arise, 
characterized by dc voltages (over one superlattice period) 
that are multiples of hco/e. The process resembles the 
inverse ac Josephson effect [23] in a stack of superconduc- 
tor-insulator-superconductor hysteretic junctions [24]. It 
has been proposed to use a superlattice based frequency- 
to-voltage converter as a low temperature voltage stan- 
dard [12] ; it has been guessed [12] that electron scatter- 
ing may result in dc voltage steps with values different 
from hco/e. 

In this paper we report on a study of quasiballistic 
electron motion in a superlattice along the superlattice 
axis. We treat the electrons as free particles in a superla- 
ttice miniband but suffering elastic and inelastic scatter- 
ing. We apply a quasi classical balance-equation approach 
for describing the electron motion in the superlattice 
miniband [25] and assume an equivalent circuit, of a su- 
perlattice with a current source, that is similar to the 
equivalent circuit used in (small impedance) Josephson 
junction simulations [23]. Our calculations, performed 
for currently available superlattice diodes at room tem- 
perature [10, 26] will show that a current flowing through 
a superlattice created by an external THz-field, can gener- 
ate a dc voltage, i.e. switching from a zero voltage to 
a finite voltage state, in case of quasi ballistic electron 
motion, and that electron scattering is even a necessary 
condition for switching. We will also show that the de- 
pendence of the ac field induced dc voltage on the ampli- 
tude of the external field has the form of twisted plateaus, 
with the middle point being with high precision equal to 
the photon energy divided by the electron charge (hco/e). 

We present results indicating that irradiation of cur- 
rently available two-terminal superlattice devices at room 
temperature with strong THz-radiation should allow to 
observe dc voltage generation. We will furthermore dis- 
cuss the response of a superlattice under strong radiation 
showing a complex scenario for the temporal variation of 
the voltage generation; universal behavior of the dc volt- 
age generation is found for a large set of parameters. Our 
calculations deliver the dependence of the switching time 
on the THz-field strength; the switching time can be as 
short as few picoseconds. Finally, we will discuss dynamic 
localization taking account of electron scattering. 
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Fig. 1. a Superlattice switching: Under the influence of an external 
current i~xt(t), a dc voltage across the superlattice Vac is expected, 
and b, equivalent circuit; i ex t ( t )  = external THz-current, B = super- 
lattice capable to perform Bloch oscillations, Co = superlattice 
capacitance, C = parasitic capacitance, Vac = dc voltage across the 
superlattice, i(t) = electric current through the superlattice 

current may be created by focusing THz-radiation on an 
antenna wire connected to the superlattice [10]. At an 
appropriate strength of the THz-field that is induced in 
the superlattice by the THz-current, a dc voltage Vdc may 
be expected; from theoretical studies neglecting scattering 
of electrons in the superlattice Vdc = +_ Nhco/e has been 
suggested [11, 12]. 

We will calculate the voltage response of the superla- 
ttice using an equivalent circuit description (Fig. lb), with 
a THz-current source delivering the external current .~xt (t) 
of frequency co, the time-dependent current i(t) through 
the superlattice (B) that contains electrons capable to 
perform Bloch oscillations, the superlattice capacitance 
Co = t/S(4~L) - t ,  where t/is the (average) dielectric con- 
stant of the superlattice material, S the superlattice area, 
L the length of the superlattice (L -- Na, a = superlattice 
period), and C a parasitic capacitance in parallel to the 
superlattice capacitance. 

The equivalent circuit corresponds to a circuit used for 
Josephson junctions [23]. However, there is a severe dif- 
ference: While in a Josephson junction no losses due to 
scattering of the current-carrying carriers (Cooper pairs) 
occur, there is dissipation in the superlattice (B in Fig. 1 b) 
due to electron scattering. 

III. Equations for the superlattice dynamics 

II. Principle of switching 

We consider (Fig. la) a semiconductor superlattice con- 
sisting of N periods. Electrical contacts (one connected to 

e x t  ground) allow to apply an external THz-current i~ (t) and 
to measure the dc voltage across the superlattice; the 

For  a description of the superlattice dynamics we use, 
following [3], a quasi classical description of the electron 
transport, with a quantum mechanical energy dispersion 
relation, a wave packet description of the electron motion 
and the (classical) Boltzmann equation for the electron 
distribution function. We consider the energy spectrum of 
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electrons in a miniband of the superlattice in a tight- 
binding approximation 

1 
e(p) = ~A [1 - cos pa/h] (1) 

where e is the kinetic energy, p the quasi momentum of an 
electron along the superlattice axis (perpendicular to the 
layers), A the miniband width, and a the superlattice 
period. 

The quasi classical velocity v(p) of an electron moving 
along the superlattice axis is given by the expression 

v(p) - Oe(p) _ Aa sin pa (2) 
Op 2h h 

showing that the velocity of electrons in a miniband is 
a periodic function of the momentum, with maximum 
velocity �89 The macroscopic-average state of electrons 
in the superlattice miniband may be specified by the time 
dependent distribution function f ( p , t )  satisfying the 
Boltzmann equation 

~f + eE(t) Of S t ( f )  (3) 
& op 

where E(t) is the time dependent electric field directed 
along the superlattice axis and St(f)  the collision integral. 

In order to take into account both elastic and inelastic 
lattice scattering of electrons we introduce a collision 
integral of the form [251 

St( f )  = - v d f  (p, t) -f0(P)] - �89 vetEf (p, t) - f ( - p, t)] (4) 

where fo(P) = �89 a [~hlo(A/2k T )1 - 1 exp [(2k T) - 1A cos pa/ 
h] is the equilibrium distribution function, T the lattice 
temperature, v~ an average energy-relaxation frequency, 
v,z an average frequency of elastic collisions, and I,(x) the 
modified Bessel function of nrh order. 

The average electron velocity V(t) and average elec- 
tron energy S(t) are, respectively, 

V (t) = ~ v(p) f (p, t)dp (5) 

O(t) = ~ e(p)f  (p, t)dp (6) 

where the integration is carried out within the Brillouin 
zone, - ~h/a < p <_ ~h/a. Both f(p, t) and fo(P) satisfy 
normalization conditions, ~f(p, t)dp = 1 and ~fo(p)dp = 1. 

The electron current density j along the superlattice 
axis is given by the general equation 

j = neV (7) 

where n is the density of electrons in the superlattice 
miniband assumed to be spatially uniform. Instead of 
solving the set of (3) to (6), we derive the balance equations 
as ordinary differential equations for V(t) and S(t). Multi- 
plying (3) by v(p) and e(p), respectively, and integrating 
over the Brillouin zone in momentum space we obtain 

OF of 
O~ + eE~ v(p) ~pdp = - vvV (8) 

aS Of Ye(S ST) (9) O~ + eE~ ~(p) ~p dp = - - 

where ST = �89 - g) is the mean thermal electron energy 
that corresponds to the velocity component along the 
superlattice axis, Vv = v~ + v~i the relaxation frequency 
of the average velocity, and # = I I (A /2kT) / Io (A/2kT) .  
Making use the relations 

@ - 2h 2 1 - (10) 

& 
- v ( p )  (11) 

@ 

and taking account of the periodicity of the distribution 
function f (p ,  t) in the momentum space we calculate the 
integrals involved in (8) and (9) by parts and obtain 

12 = eE/m(S)  - vvV (12) 

8 = e E V  - v~(s - ST) (13) 

where re(g)= moo - 2 S / A )  -1 is the energy dependent 
effective mass of the electrons in the superlattice miniband 
and mo=  2hZ/Aa 2 the effective mass at the bottom of the 
miniband. 

Equation (12), describing the dynamics of the "average 
electron" in a superlattice miniband, can be considered as 
Newton's law for the motion of the electron, with energy- 
dependent mass re(S) , while (13) represents the energy 
conservation law. When energy and velocity relaxation 
are neglected (v~, Vv--* 0) the balance equations (12) and 
(13) can be directly derived from (1) and (2), using the 
acceleration theorem [1, 21 

[9 = eE(t) (14) 

that describes dissipationless (ballistic) electron motion. 
Accordingly, (12) and (13) describe in a simple way 
quasiballistic propagation of electrons in a miniband, with 
acceleration by an electric field and suffering friction. 

To calculate the superlattice response to a high-fre- 
quency electric field we make use of the equivalent circuit 
of Fig. 1 b. The current through the superlattice i(O and 
the voltage u(t) across the superlattice are governed by the 
equation 

(C + Co) fi(t) + i(t) = iext(0 (15) 

where i(t) = J(O S. 
We introduce dimensionless variables, z = cot for the 

time, U(-c) = eE(t) a(hco) -1 for the voltage drop per one 
superlattice period, I(z) = 2h(SenApa) - l i ( t )  for the cur- 
rent, iext(r) = 2h(SenAl~a) -liext(t) for the external current, 
and the difference W, between the average electron energy 
and the mean thermal energy, W = 2(S - ST) (A/~) 1. We 
find from (12), (13) and (15) the following set of nonlinear 
ordinary differential equations 

i =  U ( 1 -  W ) - V l I  

W = UI - v w W  

Cef f~- f  = / e x t ( ~ c )  - -  I 

(16) 

(17) 

(18) 

describing nonlinear transport in an irradiated semicon- 
ductor superlattice two terminal device. The equations 
contain only three (dimensionless) parameters, namely the 
(dimensionless) velocity-relaxation frequency vt = Vv/co, 
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the energy-relaxation frequency Vw =v jco  and the 
effective capacity C,ff = co2(1 + C/Co)/Co2# where 
~Oo = (&ze2n/qmo) 1/2 is the plasma frequency. 

We derived (16)- (18) with a quasi one-dimensional 
model for the collision integral, with the relaxation fre- 
quencies v1 and Vw; these can be considered as phenom- 
onological parameters which can be extracted from either 
measured or simulated data for the static current-voltage 
characteristic. 

In the two-relaxation frequency model, a steady state 
solution of (16)-(18) gives the static current-voltage char- 
acteristic in a form [25] I = UvII[1 + U 2 / V l v W ]  - 1 .  The 
current has a peak value lp =�89 where 6 = Vw/Vi 
(6 < 1) at the critical voltage U~ = (YI1)W) 1/2. In the special 
case that we ignore elastic scattering we have Vw = v~ = v, 
where v = Vs/~O is the characteristic scattering frequency in 
dimensionless units, and Vs = v~ = Vv. We then find for the 
current-voltage characteristic the Esaki-Tsu formula [3], 
with Ip = �89 and U~ = v. In our treatment the factor 6 de- 
scribes, for 6 < 1, the effect of carrier heating yielding to 

1 a suppression of the peak current I ;  below the value Ip - 2 
[25]. This effect has recently been carefully studied by dc 
measurements of the current-voltage characteristic of su- 
perlattices [4] that gave 6 ~ 0.2 and by time-of-flight 
experiments [27], where 6 ~ 0.1 was found. The effect 
(with 6 ~ 0.03) was also revealed by comparison of simu- 
lations [28] with experiments [29, 30] on multistability 
effects in semiconductor superlattices caused by a negative 
differential conductivity. Of course, the value of 6 depends 
on the specific parameters of a sample and its lattice 
temperature. 

IV. Photon-assisted dc transport 

We will now show, how electron transitions with multi- 
photon emission and absorption are incorporated in our 
nonlinear equations. We discuss the case of an external ac 
current of frequency co, with o being high enough so that 
C~ff > 1. Then, the displacement current is large com- 
pared to the electron current and (18) describes the estab- 
lishment of a monochromatic ac voltage with the ampli- 
tude U~, ext = I o / C e f  f per superlattice period. 

We now suppose that, in addition to the oscillating 
voltage, a slowly varying voltage Uo appears and that the 
total voltage is 

U(z) = U0 + U~,cos(z + 9) (19) 

where q5 is the phase shift between the voltage and the 
external current. By time averaging of (18) over a period of 
the external current, we find the relation 

dUo ext 
C o f f ~ -  z = Io - Io(Uo, U~,) (20) 

where i~xt is an external dc current flowing in addition to 
the high-frequency external current and where 

Io(Uo, U.,) = 1/2rt ~ I(T, U0, Uo,)d~ (21) 
2~ 

describes the static current-voltage characteristic of the 
superlattice in the presence of an ac voltage, and 
I(T, Uo, Uo,) is the solution of (16) and (17). 

Supposing that the time of irradiation of a superlattice 
(laser pulse duration) is much longer than the character- 
istic scattering times, we find a solution of (16) and (17) for 
an arbitrary periodic function U(t) in the form 

I(T) = ~ Vdrle-v<~-q)sin U(z2)d'c2 (22) 
--co LT~ J 

W(z) = 1 - vd%e -v(~-q) COS U('c2)d'c 2 (23) 
- c o  L '~ I  

where we used, for simplicity, a single relaxation frequency 
approximation, vl = Vw = v. The solutions given by (22) 
and (23) do not depend on the initial conditions for I and 
W, because scattering completely destroys the coherence 
of electron motion in time intervals longer than the in- 
verse scattering frequency v-1. 

In case of a monochromatic driving voltage the time 
averaging of (22) yields [13] 

co 

Io(Uo, Uo,) = ~vd~ e-~sin(Uo~) Jo(2U,,sinz/2) (24) 
0 

where Jo(x) is the Bessel function of zeroth order. The last 
equation has the same form as the equation describing 
current flow in a superlattice miniband, with electrons 
performing Bloch oscillations with the Bloch frequency 
FaB = eEoa/h and suffering scattering [33, except of the 
factor Jo(2U~,sinz/2) , which implies frequency modula- 
tion of the Bloch oscillations by the external ac field. 

Using the Fourier expansion 

Jo(2U,osinT/2) = J~(Uo) + 2 ~ j2(Uo~ ) cos nz (25) 
n = l  

we find for the static current-voltage characteristic of an 
irradiated superlattice 

Io(Uo, U~,) = J,(U~o)2 ioEr(Uo + n) (26) 
tl = co 

where I~ r = Uov- 111 + (Uo/v) 2] 1 is the Esaki-Tsu cur- 
rent-voltage characteristic [3]. 

Thus, we see that an ac electric field (voltage) produces 
new channels for dc current flow in a superlattice, due to 
multiphoton absorption or emission. The probability of 
absorbing (or emitting) n photons is given by JZ,(U~) and 
the resulting current-voltage characteristic corresponds to 
the Esaki-Tsu characteristic weighted with Jz(Uo~) and 
shifted by nhco/e in the scale Eoa, which is the dc voltage 
drop per superlattice period. For  v --+ 0 the current-volt- 
age characteristic looks like a set of vertical spikes similar 
to that given in [11], with negative conductance, i.e. cur- 
rent flow against the applied dc electric field, which is due 
to absorption of photons. 

It follows from (26) that without photon emission or 
absorption the current I0 is zero if Jo(U~,) = 0, i.e. there is 
no electron motion without photon emission or absorp- 
tion. This is the case of dynamic localization of the elec- 
trons in the miniband due to frequency modulation of the 
Bloch oscillations by the external field. 
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Under  the condit ion of dynamic  localization pho ton  
absorpt ion and emission processes, J~(U~o)# O, cause 
finite dc current  flow, resulting in a negative conductance  
near the zero-vol tage/zero-current  state. This state is 
therefore unstable, and switching occurs spontaneously  to 
a finite-voltage state, which can be described by (20). 

Examples of current-voltage characteristics calculated 
from (26) are drawn in Fig. 2. For  an ac frequency smaller 
than the scattering frequency (cO/Vs < 1, upper par t  of the 
figure) the current-vol tage characteristic corresponds to 
the Esaki-Tsu characteristic (for Uo~ ~ 1) or  is modified 
under  the influence of an ac field (Uo, = 1 and U,~, = 2.4); 
the ac field ampli tude Uo = 1 corresponds to a field am- 
plitude (E~o) at which an electron can gain or loose, per 
superlattice period, the qua n t um  energy hcO. In all cases 
a negative differential conductance  occurs at large values 
of the dimensionless dc voltage Uo; for Uo = 1 the energy 
eEoa an electron gains per superlattice period the quan-  
tum energy hcO of the external dc field. For  a frequency 
larger than the scattering frequency (curves in the middle 
of the figure, cO/Vs = 2) a negative conductance  occurs at 
large ac field values (U~o = 2.4). In this case the zero- 
vol tage/zero-current  state is unstable, i.e. the system will 
switch to a finite voltage state. If there is no dc current 
flow, the corresponding voltage is near Uo = 1, i.e. that  
the dc voltage drop per superlattice period (Eoa) is close to 
hco/e; in spite of s trong scattering (cO/v s = 2) the value of 
the voltage drop  we expect is near the value calculated for 
the case v = 0. Fo r  the case of  weak scattering (cO/Vs = 5, 
lower curves) the negat ive-conductance state at zero volt- 
age is expected to switch to a voltage state with Uo of 
almost  1. 

Current ly  available superlattices have, at r o o m  tem- 
perature, a characteristic scattering frequency Vs ~ 10 ~3 
s 1 [25]. We therefore suggest that  a state of negative 
conductance  can be created in a superlattice at r o o m  
temperature by use of a THz-field (cO > 1013 Hz) and, that  
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Fig. 2. Current-voltage characteristics of a superlattice in the pres- 
ence of a strong ac field calculated analytically fiom (26) for strong 
scattering (upper curves) and weaker scattering (middle and lower 
curves) for a weak ac field (U~ = 0.1), a strong ac field (Uo~ = 1) and 
a very strong ac field (Uo, - 2.4); m - frequency of the ac-field, Vs = 
average scattering frequency, U~ = eEo, a/ho.) = ac voltage amplitude 

application of a THz-field to a superlattice (at room tem- 
perature) can lead to switching from zero dc voltage to 
a finite dc voltage state, with a dc voltage drop  per 
superlattice period of about  hco/e. 

We have calculated, using (26), the dependence of the 
dc conductivi ty on the strength of the ac voltage (Fig. 3). 
For  s t rong scattering (co/Vs < 1) the dc conductivi ty is 
positive; with increasing strength of the ac field the dc 
conductivi ty decreases (upper curves). In case of weak 
scattering (co/Vs > 1) the dc conduct ivi ty  decreases stro- 
ngly with Uo~ and then oscillates a round  o-de = 0, with 
intervals of negative conductivity. The width of these inter- 
vals is largest for co/Vs ~ 2 and decreases for increasing cO~Vs. 

In the limiting case of strong scattering (co < Vs) we 
find from (26), for Uo -~ 0, the approximat ion  

1 
adc(U~)/~o : [i + (Uojv)=] 3/2 (27) 

which shows that  the dc conductivi ty decreases for U~o ~ v 
as adc/ao ~ 1 - ~(ea/hvs)) 2 E 2. The reduct ion of conduct-  
ivity increases quadratical ly with the ac field strength. 
This is the basis for the use of  a superlattice device as 
power  detector for millimeter wave radiation (this will be 
published separately). For  a large ac field strength, 
Uo~ > v, the dc conductivi ty decreases strongly, ado/o-0 = 
(hvs/ea)3E[~ 3. At high field strength the conduct ivi ty  of the 
superlattice is strongly suppressed. 

We can obtain an analytical expression for the dc 
conductivi ty of the irradiated superlattice for the case of 
negligible scattering (v ~ 0). We find, with Uo < v, f rom 
(26) an approximate  expression for the current (in the limit 
v ~ 0 )  

Io(Uo, Uo) = J~(U,o) Uo 
v[1 + (Uo/v) 2] (28) 

1.o I ~ ~ m / V s  = o.1 
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Fig. 3. Dc conductivity of a superlattice plotted as a function of the 
ac voltage amplitude U~o for different strengths of scattering (co = 
frequency of the ac field, Vs = scattering frequency). The arrows 
indicate regions of negative conductivity 
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which shows that in the limit of negligible scattering 
photon processes (with n = + 1, + 2. . .  ) do not contrib- 
ute to the dc transport  and that the dc Esaki-Tsu current- 
voltage characteristic is multiplied by J~(U~) . Conse- 
quently, we obtain 

crd~(U,o) /~o = j2(U,o) (29) 

which corresponds to a conductivity that is equal to the 
conductivity without ac field multiplied by J~(Uo) �9 It 
follows that in the limit v ~ 0 a negative conductivity does 
not occur, i.e. that without dissipation the zero-volt- 
age/zero-current state is stable. 

In case of v ~ 0 this state is unstable and switching 
occurs to a finite voltage state, with not completely negli- 
gible current (because of consumption of energy in the 
voltage measuring device). The energy for switching and 
for maintaining the stable state is delivered by the external 
ac field, with the electrons performing multiphoton 
(n = _+ 1, +_ 2, ... ) transitions. 

We can calculate the time of switching from the unsta- 
ble state (Uo = 0) to the stable state (Uo-1) .  Using 
a piecewise approximation of the function Io(Uo, U~) by 
straight lines we find from (20) and (26) for the switching 
time (in dimensionless units), Zsw, the approximate expres- 
sion 

2Ceff v , Inl�89 11 
~ s w =  I~.~(u,J Ic~o I (30) 

where ae~(Uo~) is the small dc field (Uo ~ 0) negative con- 
ductivity in the presence of a strong ac driving voltage U~,, 
a0 the dc conductivity at small Uo and U,o = 0, and 6U 
the amplitude of an initial perturbation of the system. The 
switching time is proportional  to the capacity Cef  f and to 
the velocity relaxation frequency Vl, and decreases with 
increasing perturbation. The switching time is very large 
for small negative values of the conductivity, aa~(U~o) ~ 0, 
and reaches the smallest values for large (negative) values 
of a~c(U~). The shortest switching time is expected for 
values v ~ 2 to 5 (see Fig. 3). 

V. Circuit dynamics 

The idea of photon-assisted transport  delivers a key for an 
understanding of the complex nonlinear dynamics of the 
ac current driven superlattice, described by (16)-(18). 

Let us analyze the case when a THz-current, adiabati- 
cally switched on, drives the superlattice according to 

]ext('c) = I~Xt[1 - -  exp( - -  Z/Zo)]COSZ (31) 

where % is the time of switching-on of the THz-current. In 
this case the time dependent current I(z) and voltage U(z) 
can be obtained as numerical solutions of (16)-(18). We 
use the conditions I('c = 0) = 0, W(z = 0) = 0, and U(z = 0) 
= 0.005 for an initial spontaneous perturbation of the 

system. 
As an example, we consider a GaAs/MAs superlat- 

tice at T = 300 K with the miniband width A = 110 meV 
(#~0.72) ,  for THz-radiat ion delivered by a far- 
infrared laser emitting radiation of a wavelength of 
118 gm (co= 1.6-1013s-~), and scattering frequencies 
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Fig. 4. Calculated voltage U across a superlattice period as a func- 
tion of the dimensionless time, z = cot. The period of oscillation (2~z) 
is small in the time scale and not resolved in the figure. Current- 
voltage phase-plane diagrams corresponding to three different 
modes of operation are indicated on the right side of the figure (I 
= current in normalized units, # = Ii/Io): (a), transient process; (b), 

unstable limit cycle; (c), stable limit cycle, with time averaged voltage 
V~c = hoe~e; the dashed curve shows the static current-voltage char- 
acteristic used in the simulations 

Vv = 1.1'1013s -1, v~ = 2.2"1012s 1 (ldi : 0.69, Vw = 0.14, 
5 = 0.2) extracted from experimental static current-volt- 
age characteristics [25]. For  typical carrier densities in 
a superlattice, n ~ 1016 - 1017 c m - 3 ,  the parameter  #Cell 
lies in the range 0.7 > #Cell < 7. We choose #Ceff = 1 and 
3 for simulations. 

I~ /Ce f  f 2.4, Figure 4. shows, for ext = the dynamics of the 
switching. During switching-on of an external THz-cur-  
rent within the time % an ac voltage U across the superla- 
ttice develops, having a mean value [7 ~ 0 (left part  of 
Fig. 4). At the switching time Zsw the system jumps to 
a state with a mean voltage near [7 = 1. On the right side 
of Fig. 4 we show in the current-voltage space for three 
different time intervals instantaneous values of current 
and voltage. The interval (a) corresponds to the transient 
response of the system during the start of the external 
field, with increasing external current amplitude across 
the superlattice. In the interval (b) the system is in a quasi 
anti-symmetrical unstable current-voltage limit cycle with 
slow drift of the time averaged voltage towards the posit- 
ive direction initiated by the external perturbation 
U(z = 0) > 0. Then, a rapid flop occurs to the stable limit 
cycle. The time interval (c) characterizes the stable state 
with the time averaged voltage close to ho~/e, i.e. 

= ~2~U(z)dr = 1. 

VI. Results of the simulations 

In Fig. 5 we summarize the results of simulations. First we 
show, Fig. 5a, the dependence of the dc conductivity on 
the amplitude of the ac voltage U,o obtained by solving 
(16) and (17) for a small constant voltage Uo ~ 1 (at 
increasing ac voltage) with a small current flowing in 
addition to an ac current; current flow is, e.g., possible 
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Fig. 5. a dc conductivity as a function of the ac voltage amplitude 
U~ = eE~a/hco and b dc voltage per one period V~ as function of the 
external-current amplitude I e x t /Ce f f ;  C, switching time for two values 
of the effective device capacitance #C~ff. 

through the voltage measuring device. As expected, we 
find negative values of the conductivity in regions near the 
points of dynamic localization, where J~(Uo~) ~ O. Results 
obtained by direct numerical simulation of the total sys- 
tem decribed by (16) (18) are drawn in Fig. 5b and c, 
showing the instability regions in the r Io~/C~ff scale. Figure 
5b shows the dc (time averaged) voltage per one period, 
V(~) expected for a superlattice at appropriate irradia- dc , 

tion. The dependence of the dc voltage on the strength of 
the ac current has a form of twisted plateaus, with the 
middle points being, within an accuracy of the numerical 
calculations, equal to hco/e. In Fig. 5 (c) we have drawn the 
dependence of the switching time (~sw/2~z) counted in 
number of periods of the ac current. The time is in good 
agreement with the analytical formula of (30); for o-dc(U~) 
/~ro we used the data of Fig. 5 (a) and the initial condition 
U(z = 0) = 0.005. The switching time strongly depends on 
C e f  f while the voltage ~dc~(~) is, for our parameters and 
within the accuracy of our calculations, independent of 
Ceff, i.e. V~< ) does not depend on the switching time. We 
find a switching that is fastest at the largest value of the 
negative conductivity and is of the order of a picosecond. 

We would like to mention that electron transport in 
a superlattice can be described within the framework of 
a Bloch type quasiclassical model as presented in this 
paper, if the voltage drop per one period is smaller than 
a superlattice miniband width, i.e. eEa < A. Then, the 
spatial amplitudes of electron trajectories X ~ A/eE are 
larger than the superlattice period [31]. This condition 
implies that U < A/hco and, for our special example, 

U < 11. As one can see from Fig. 4 this condition is well 
satisfied. 

In order to observe dc voltage creation by a THz-field, 
the required field strength follows from the condition 
Jo(U*) < O. Fastest switching (for the first band of instabil- 
ity) occurs for U* ~ 2.4. Then the amplitude of the ac 
voltage across the superlattice is Vac ~ 2.4" Nhco/e, and for 
co ~ 1.57.1013s - i and N ~ 50, Vac ~ 0.5 V. The ac power 
Pa~ dissipated in the superlattice is Pa~ 1 2 = ~V~cR~c, where 
R~ is the ac resistance. For  a typical superlattice device 
[10] a resistance at THz-frequencies of R=c ~ 100fl can be 
achieved for a diameter of a superlattice D ~ 5jam. Then, 
P=~ ~ 1.3 roW. This power level (4 kW/cm 2) in the superla- 
ttice is readily achievable with currently available far- 
infrared lasers, even at a low efficiency of antennas for 
THz-radiation [10]. 

V I I .  D y n a m i c  l o c a l i z a t i o n  

Recent quantum mechanical treatments of electron states 
in a superlattice in a time dependent field [16-22] 
have shown that the superlattice miniband width becomes 
zero under the condition of dynamic localization, 
Jo(eEo~a/hco) = 0. This "miniband collapse" [18] has been 
attributed to an interplay of the spatial periodicity of the 
superlattice potential and the temporal periodicity of the 
external ac field in the Schr6dinger equation. We now will 
show how this effect is involved in our quasiclassical 
treatment of the superlattice response and discuss its rela- 
tion to dc transport in a superlattice irradiated with THz- 
radiation. 

We discuss the case of ballistic electron motion, i.e. we 
neglect scattering (v~ = Vw -= 0). We obtain from (16) and 
(17) the solutions 

I = sin U(za)d~l + ~Po (32) 

I } W = 1 - cos U(zl)dZl + ~Oo (33) 

describing coherent motion of ballistic (unscattered) elec- 
trons in a superlattice miniband with the initial condition 
I(r = 0) = sin~0o for the current, W(r = 0) = 1 - coscpo 
for the energy, and ~Oo for the momentum (in dimension- 
less units). 

We introduce the integral x(0 = ~toV(tl)dtl + Xo for 
characterizing the motion of an electron in real space. 
Then, for a monochromatic ac field superimposed to a dc 
field, (32) gives the following solution for the electron 
trajectory 

x(t)=Vo ~ j,,{eEo>a~ 1 {cos~oo- 

- cos[(cos + no)) t + q)o]} + Xo (34) 

where Vo = �89 is the peak velocity, cos = eEoa/h the 
Bloch frequency of the electron oscillation in a constant dc 
field of amplitude Eo, and Eo and co are the amplitude and 
frequency of the external ac field, respectively. 
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Equation (34) decribes the electron localization in real 
space, namely, without mult iphoton transitions the ampli- 
tude of x becomes zero for Jo = 0, i.e. the electrons are 
completely spatially localized. At large frequency of the ac 
field, co >> coB (with q0o = 0, and x0 = 0 at t = 0), (34) be- 
comes 

x( t )=~XoJo~eE~a)  - c o s c o B t )  ( 3 5 )  

where Xo = A/eEo is the spatial amplitude of Bloch oscil- 
lations in the absence of an ac driving field. It follows from 
(35) that in the high-frequency limit (co >> coB) the effect of 
an ac field on a ballistic electron oscillating with the Bloch 
frequency coB in a superlattice leads to a dramatic reduc- 
tion of the spatial amplitude Xo. The effect can be taken 
into account by simple renormalization of the "collaps- 
ing" superlattice miniband width A--.AJo(eEo~a/hco) 

0, in agreement with the results of quantum mechanical 
treatments [16-22]. 

One might intuitively suggest that the same renormal- 
ization could be valid for the dc transport  in a superlattice 
in an applied THz-field, with the dc conductivity propor-  
tional to A, according to ado = en/moVs, where Vs is the 
characteristic scattering frequency and mo = 2h2/Aa 2 the 
effective mass of carriers at the miniband bottom, which 
would lead to aac~A. However, for the limiting case 
co ,> Vs, (29) delivers a quadratic dependence on Jo, 
aec ~ JZ(eE~,a/hco) �9 This difference indicates that electron 
scattering plays an essential role in the THz-response even 
if co ,> Vs. Our  results indicate that in the limit of extremely 
weak scattering the dc conductivity shows an almost neg- 
ligible range of negative conductivity, i.e. switching from 
the zero-voltage/zero-current state takes, according to 
(30), an almost infinite time of switching. Assuming that 
the time of irradiation (laser pulse duration) is much 
longer than the inverse scattering frequency Vs 1, (32) and 
(33) describing the dynamics of ballistic (unscattered) elec- 
trons in a miniband are no longer valid and one should 
use (22) and (23), or the basic (16) and (17), in order to take 
into account scattering. Our  analysis shows that under the 
influence of a high-frequency field (co ~> cob and co/Vs ,> 1) 
an electron performs in the average a quasiballistic 
motion, with ballistic motion over co/Vs periods. 

In case of stronger scattering irradiation of a superla- 
trice with a strong THz-field (co > Vs) leads to fast switch- 
ing as we have shown. The stable state, with a THz-field 
induced dc voltage, is associated with dynamic localiza- 
tion of the electrons in the superlattice miniband. 

We would like to mention that in a recent paper [32] 
a theoretical investigation of terahertz emission and four- 
wave-mixing due to a quantum mechanical treatment of 
damped Bloch oscillations has been presented. The 
method [32] should, in principle, also allow to analyze the 
THz-field induced nonlinear transport  in a semiconductor 
superlattice. 

VIII. Conclusion 

In conclusion, using a balance equat ion approach we have 
derived a set of nonlinear equations describing high- 

frequency properties of electrons in a semiconductor su- 
perlattice in a strong high-frequency electric field. Our 
real-time simulations performe d for currently available 
superlattices at room temperature exposed to a strong 
THz-field have revealed the possibility of fast spontaneous 
generation of a dc voltage due to an instability caused by 
a negative conductivity due to carriers in a miniband that 
are capable to perform Bloch oscillations. We have found 
that the dependence of the dc voltage per one superlattice 
period on the ac driving current amplitude is expected to 
have a form of twisted plateaus, with the middle points 
being equal to the photon energy divided by the electron 
charge. Our calculations show that for typical superlattice 
parameters characteristic times for switching from a zero 
voltage state to a finite dc voltage state lie in the 
picosecond range. 
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