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We report a microscopic derivation of two-component Ginzburg-Landau (GL) field theory and the conditions
of its validity in two-band superconductors. We also investigate the conditions when microscopically derived
or phenomenological GL models fail and one should resort to a microscopic description. We show that besides
being directly applicable at elevated temperatures, a version of a minimal two-component GL theory in certain
cases also gives an accurate description of certain aspects of a two-band system, even substantially far from Tc.
This shows that a two-component GL model can be used for addressing a wide range of questions in multiband
systems, in particular vortex physics and magnetic response. We also argue that a single Ginzburg-Landau
parameter cannot in general characterize the magnetic response of multiband systems.

DOI: 10.1103/PhysRevB.85.134514 PACS number(s): 74.20.Fg, 74.25.Ha

I. INTRODUCTION

Ginzburg-Landau (GL) theory of single-component super-
conductors has historically proven its strong predicting power
and its extraordinary value as a phenomenological tool. This
is despite the fact that formally it can be justified only in some
cases in a very narrow band of temperatures. The temperature,
on the one hand, should be high enough to permit an expansion
in a small order parameter. On the other hand, the temperature
should not be too high because the mean-field theory becomes
invalid near Tc due to critical fluctuations. Nonetheless the
great success of the GL theory is due to the fact that it yields
a qualitatively correct picture in an extremely wide range of
temperatures, even when its application cannot be justified on
formal grounds.

Shortly after the theoretical proposal of two-band super-
conductivity and, more recently, two-component GL (TCGL),
expansions were done in application to two-band systems;
see, e.g., Ref. 1. However, in contrast to single-component
GL theory, the conditions under which the TCGL model is
valid are still widely believed to be an open question. In this
work, we resolve this question. By taking advantage of the
recently calculated normal modes and length scales in the
two-band Eilenberger model,2 we present a self-consistent
microscopic analysis of the applicability of TCGL theories
to describe both linear and nonlinear responses of two-
component superconductors. The results validate the appli-
cability of TCGL for the study of a wide spectrum of physical
questions, including aspects of physics in low-temperature
regimes.

The problem. The temperature range of validity of the
TCGL model is bounded from below by a requirement
that the field amplitudes should be small. More importantly,
the bound follows from the observed disappearance, under
certain conditions, of one of two fundamental length scales
governing the asymptotical behavior of the superfluid density
in microscopic theories.2 This implies that the classical two-
component field theory obtained in power-law expansion does
fail at low temperatures or at substantially strong interband
couplings.2 Also, as for its single-component counterpart, the

region of validity of TCGL expansion is bounded from above
by a fluctuation region.

The key difference between TCGL and single-component
GL theory is the fact that the former has several coherence
lengths. The existence of multiple length scales, which arise
from hybridized normal modes of the linearized TCGL
theory, can dramatically affect the magnetic response of the
system.3 Under certain conditions, it results in situations where
the London penetration length falls between two coherence
lengths,4 which was recently termed the “type-1.5” regime5

(for a recent brief review, see Ref. 6). However, because the
condensates in the bands are not independently conserved, in
the limit T → Tc, there should be indeed only one divergent
length scale associated with density variations. This in turn
implies that in certain cases, there also could be a temperature
range close to Tc where long-wavelength physics is well
approximated by a single-component GL theory (although
this regime is not generic since its width is controlled by
different parameters than the fluctuation region and thus it
can be nonexistent because of critical fluctuations). Therefore
the conditions of the applicability of TCGL are quite different
from that of single-component GL theory and warrant a careful
investigation, which we present below.

II. MODEL AND BASIC EQUATIONS

The expansion in powers of gradients and gap functions of
microscopic equations yields the two-component Ginzburg-
Landau (TCGL) free-energy density:

F =
{ ∑

j=1,2

(
aj |�j |2 + bj

2
|�j |4 + Kj |D�j |2

)

− γ (�1�
∗
2 + �2�

∗
1) + B2

8π

}
, (1)

where D = ∇ + i A, A and B are the vector potential and
magnetic field, respectively, and �1,2 are the gap functions in
two different bands. Although the fields �1,2 are often called
“two order parameters” in the literature, below we avoid this
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terminology since it is not quite accurate. First, there is only
U(1) local symmetry in this model in spite of the presence
of two components, since the other global U(1) symmetry is
explicitly broken by the terms γ (�1�

∗
2 + �2�

∗
1). Second, and

more importantly, the applicability of the Ginzburg-Landau
or Gross-Pitaevskii classical field theory does not in general
require any broken symmetries. The simplest example is
two-dimensional (2D) superfluids at finite temperature: they
can indeed be described by the Gross-Pitaevskii classical
complex field, yet they do not possess spontaneously broken
symmetry. Likewise, in superfluid turbulence, there is not even
algebraic long-range order, yet the system can be described by
a classical complex field. Indeed, in some cases, such as, e.g., in
U(1) × U(1) superconductors or superfluids, one can write
down two-component classical field theory on symmetry
grounds. A U(1) system such as two-band superconductors can
also under certain conditions be described by two-component
classical field theory, although it does not automatically
follow from its symmetry. The main aim of this paper is to
analyze under which conditions two-band superconductors are
described by TCGL theory.

To verify the applicability of TCGL theory, we present
a comparative study of the linear response and nonlinear
regime in TCGL and exact microscopic theories. We consider
the microscopic model of a clean superconductor with two
overlapping bands at the Fermi level.2 Within quasiclassical
approximation, the band parameters characterizing the two
different cylindrical sheets of the Fermi surface are the Fermi
velocities VFj and the partial densities of states (DOS) νj ,
labeled by the band index j = 1,2.

It is convenient to normalize the energies to the critical
temperature Tc and length to r0 = h̄VF1/Tc. The vector
potential is normalized by φ0/(2πr0), the current density
is normalized by cφ0/(8π2r3

0 ), and therefore the magnetic
field is measured in units φ0/(2πr2

0 ) where φ0 = πh̄c/e is
the magnetic-flux quantum. In these units, the Eilenberger
equations for quasiclassical propagators take the form

vFj np Dfj + 2ωnfj − 2�jgj = 0,
(2)

vFj np D∗f +
j − 2ωnf

+
j + 2�∗

j gj = 0.

Here, vFj = VFj/VF1, ωn = (2n + 1)πT are Matsubara fre-
quencies, and the vector np = (cos θp, sin θp) parameterizes
the position on 2D cylindrical Fermi surfaces. The quasi-
classical Green’s functions in each band obey normalization
condition g2

j + fjf
+
j = 1.

The self-consistency equation for the gaps is

�i = T

Nd∑
n=0

∫ 2π

0
λijfjdθp. (3)

The coupling matrix λij satisfies the symmetry relations
n1λ12 = n2λ21, where ni are the partial densities of states
normalized so that n1 + n2 = 1. The vector potential satisfies
the Maxwell equation ∇ × ∇ × A = j, where the current is

j = −T
∑
j=1,2

σj

Nd∑
n=0

Im
∫ 2π

0
npgjdθp. (4)

The parameters σj are given by σj = 4πρnjvFj and

ρ = (2e/c)2(r0VF1)2ν0.

The derivation of the TCGL functional (1) from the
microscopic equations1 formally follows the standard scheme
(we present it in Appendix A). First, we find the solutions
of Eqs. (2) in the form of the expansion by powers of
the gap function amplitudes �1,2 and their gradients. Then
these solutions are substituted to the self-consistency equation
for the gap functions, which yields the TCGL theory. The
derivation of coefficients in expansion (1) is presented in
Appendix A. Here we denote the values of coefficients
obtained from microscopic theory as āν, b̄ν, K̄ν , and γ̄ , which
are given by the expressions

āi = ρni(λ̄ii + ln T − Gc),

γ̄ = ρn1n2λJ /Detλ̂,
(5)

b̄i = ρniX/T 2,

K̄i = ρv2
Fi b̄i

/
4,

where λJ = λ21/n1 = λ12/n2. Here, X = 7ζ (3)/8π2, λ̄ij =
λ−1

ij , and Gc = [Trλ̂ −
√

Trλ̂2 − 4Detλ̂]/(2Detλ̂).
Note that in general the derivation of the TCGL model

is not implemented as an expansion in powers of a single
small parameter τ = (1 − T/Tc), but the outlined above
procedure is based on the assumption of smallness of several
parameters (gap functions and their gradients). Indeed, the
formal justification of these assumptions is not straightforward
and to the present moment has been absent.1 In the present
work, we show under what conditions these assumptions are
rigorously justified.

III. ASYMPTOTIC BEHAVIOR OF THE FIELDS AND
COHERENCE LENGTHS

First, we investigate the asymptotical behavior of the
superconducting gaps formulated in terms of the linear modes
of the density fields, both in GL3 and microscopic2 theories.
To find the linear modes, we rewrite the equations in terms of
the deviations of the gap fields from their ground-state values:
�i = �i0 + �̄i where i = 1,2. To illuminate the qualitatively
important physics, we consider a one-dimensional case in the
absence of magnetic field. Let us rewrite the TCGL equations
by keeping on the left-hand side (lhs) the terms linear in
deviations �̄i , while collecting the higher-order nonlinear
terms on the right-hand side (rhs):[

K1d
2/dx2 − a1 − 3b1�

2
10

]
�̄1 + γ �̄2 = N1,

(6)[
K2d

2/dx2 − a2 − 3b2�
2
20

]
�̄2 + γ �̄1 = N2.

The rhs gives nonlinear source terms Ni = bi(3�i0�̄
2
i + �̄3

i ).
The solution of Eq. (6) can be found in Fourier representation
to have the form

�̄i(k) = R̂−1
ij Nj (k), (7)

where

R12 = R21 = γ,

Rii = −[
Kik

2 + ai + 3bi�
2
i0

]
.
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In this case, the response function R̂−1 has two poles in the
upper complex half plane k = iμH and k = iμL that determine
the two inverse length scales or, equivalently, the two masses
of composite gap function fields,3 which we denote as “heavy”
μH and “light” μL (i.e., μH > μL).

Let us set K1 = K2, which can be accomplished by
rescaling the fields �1,2. Then, the matrix R̂−1(k) can be
diagonalized with the k-independent rotation introducing the
new linear modes of the fields �β = Uβi�̄i and the sources
Nβ = UβiNi , where β = L,H and i = 1,2. The rotation
matrix Û is characterized by the mixing angle2,3 as follows:

Û =
(

cos θL sin θL

− sin θH cos θH

)
. (8)

Using the diagonal form of the response function R̂−1(k) in
the real-space domain, we obtain

�β(x) = − 1

2μβ

∫ ∞

0
dx1e

−μβ |x1−x|Nβ(x1) + Cβe−μβx, (9)

where Cβ = ∫ ∞
0 [Nβ(x) + 2Nβ (0)]e−μβxdx/2μβ is chosen so

that to satisfy the boundary condition, �β(0) = Nβ(0)/μ2
β ,

which corresponds to the condition �1,2(0) = 0 at x = 0.

A. The limit τ → 0

Expression (9) shows that two fields �L,H vary at distinct
coherence lengths: ξH = 1/μH and ξL = 1/μL. They consti-
tute fundamental length scales of the TCGL theory (1). They
characterize the asymptotical relaxation of the linear combina-
tions of the fields �1,2; the linear combinations are represented
by the composite fields �L,H . Our calculation shows that
these length scales behave qualitatively differently in the limit
τ → 0. Infinitesimally close to Tc, the largest length diverges
as ξL ∼ τ−1/2, while the smaller ξH remains finite. Similar be-
havior also follows from full microscopic calculation shown in
Figs. 1(b)–1(d), where the temperature dependence of masses
μL,H is plotted. The presence of the nondiverging length scale
ξH makes the qualitative difference with the single-band GL
theory, but indeed does not contradict the standard textbook
picture that in the limit τ → 0, the mean-field theory of a U(1)
system should be well approximated by a single-component
GL model. As we show below, the amplitude of the “heavy”
mode vanishes in the τ → 0 limit faster than that of the “light”
mode. Neglecting the heavy mode contribution, one indeed ob-
tains a single-component GL theory infinitesimally close to Tc.

We can use Eq. (9) to evaluate the asymptotical amplitudes
of �H,L(r) in terms of the powers of the expansion parameter
τ , in the limit τ → 0. The goal is to evaluate how the
contributions from different length scales affect the overall
profile of the fields as they recover their ground-state value
away from x = 0. First, we note that the source terms NL,H (x)
are confined at the region determined by the coherence length
x < ξL. Inside this region, the amplitude of the deviations of
the gaps from the ground-state values are large so that

�̄i(x) ∼ �0i ∼ τ 1/2.

Thus the amplitude of sources is of the order of NL,H ∼
τ 3/2. Let us consider the first term in expression (9) for

FIG. 1. (Color online) (a) Comparison of the response function
singularities in the complex k plane given by the exact microscopic
and microscopically derived TCGL theories. Red crosses are the
physical poles of the microscopic theory. Blue squares correspond
to the conventional TCGL theory, while green circles show the
parasitic poles appearing in the TCGL expansion up to sixth order
in gradients. The white circle is the area where R̂(k) is analytical
and R̂−1(k) is meromorphic. In all plots (a)–(d), the yellow shade
indicates the area where the response function is not meromorphic. (b)
Comparison of the masses of normal modes (i.e., inverse coherence
lengths) of a U(1) × U(1) (dotted blue lines) and a weakly coupled
two-band U(1) (red lines) model. For the weak component in the
U(1) × U(1), we also plot the correlation length for superconducting
fluctuations in the normal state for T > Tc2. As clearly seen in
that plot, adding a Josephson coupling removes divergence of the
coherence length of the weak band. This is because the Josephson
coupling represents explicit symmetry breakdown from U(1) ×
U(1) to U(1) and thus eliminates the phase transition at lower Tc.
However, when this coupling is weak, one of the coherence lengths
has a peak around that temperature. (c), (d) Comparison of field
masses given by microscopic (solid lines), TCGL (dotted lines),
and TCGL with sixth-order gradients (dashed lines) theories. The
microscopic parameters are λ11 = 0.5, λ22 = 0.426, and λ12 = λ21 =
0.005, 0.01, 0.1 for (b)–(d), correspondingly. (e), (f) Comparison of
the mixing angle behavior given by the exact microscopic (red lines)
and microscopically derived (blue line) TCGL theories. Parameters
are the same as on the panels (c) and (d), correspondingly. Panels (d)
and (f) show a pattern of how the TCGL theory starts to deviate from
the microscopic theory at lower temperature when interband coupling
is increased.
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β = L at the asymptotical region x > ξL. In this case, the
integration is confined within x1 < ξL and yields the estimate
�L ≈ ALe−μLx , where

AL ∼ ξLτ 3/2 ∼ τ 1/2.

The second term in Eq. (9) gives the contribution of the same
order to the amplitude of the light mode.

The amplitude of the heavy mode is determined entirely
by the first term in Eq. (9) for β = H . We consider the
asymptotical region x � ξL; therefore, in this estimate, we
put NH (x1) ≈ NH (0) so that

�H (x) = NH (0)(2e−μH x − 1)/μ2
H .

The function �H (x) has a characteristic scale ξH = 1/μH and
its overall amplitude is determined by the factor

AH ∼ NH (0)/μ2
H ∼ τ 3/2.

Thus, in the limit τ → 0, the heavy mode drops out because of
the vanishing amplitude AH ∼ τ 3/2 as compared to the light
mode AL ∼ τ 1/2. Note that it is thus principally incorrect to
attribute different exponents directly to the functions �i and to
assume that they become equal in the limit τ → 0 as claimed
in Ref. 7 and followed in some other literature.8

On the qualitative level, we give a less technical but more
intuitively transparent description of the limiting behavior
of the fields near Tc. We consider the situation where the
coefficients of the quadratic terms in Eq. (1) can be written
in the form aj (T ) = αj (T − Tj ), with αj > 0. Thus in the
small τ limit, first the weakest superconducting component
becomes passive: it has nonzero superfluid density only
because of the bilinear Josephson coupling γ (�1�

∗
2 + c.c.).

To elucidate what happens in the τ → 0 limit, one can redefine
fields � = [�1,�2]T using the following transformation: � =
XD�D(r) + XS�S(r), where XD = [α2(TD − T2),γ ]T , TD ≡
Tc is the critical temperature, XS = [γ,α1(TS − T1)]T , and
TS = T1 + T2 − TD < TD . This transformation mixes the gaps
and produces a representation where the bilinear Josephson
coupling between the new fields is eliminated at the cost of
introducing mixed gradient and fourth-order couplings:

F =
∑

i,j=D,S

Kij D�i(D�j )∗ + βi(T − Ti)|�i |2

+
∑

i,j,k,l=D,S

βijklRe(�i�j�
∗
k �∗

l ). (10)

In the limit τ → 0, the dominant component �D becomes a
single-component GL order parameter while the component
�S is passive. However, instead of being induced by the
bilinear Josephson coupling, �S is induced by the terms such as
�S�

∗
D|�D|2. Thus, for τ → 0, one has �D ∼ τ 1/2. From the

fact that βS(T − TS) and βSDDD are finite at τ = 0, it follows
that in the same limit, we have �D 
 �S ∼ τ 3/2. It means
that in the limit τ → 0, retaining only the terms containing
�D is justified and allows one to approximate the model by a
conventional single-order parameter theory.

For infinitesimally small τ , there remains only a single GL
equation for the order parameter �D ,

−KDDD2�D + βD(T − Tc)�D + βDDDD�D|�D|2 = 0,

(11)

where βDDDD = (a2
2Db1 + a2

1Db2)/α1, and

βD = TD − TS

TD − T2
> 0, KDD = a1DK2 + a2DK1

α1α2(TD − T2)
, (12)

where a1,2D = a1,2(TD).
Thus it is the disappearance of the amplitude of the sub-

dominant mode which allows one to take a single-component
GL limit in this mean-field theory. The heavy mode with finite
mass even infinitesimally close to Tc is generated here by
the presence of the term |D�S |2 ∼ ξ−2

H |�S |2, where ξH is a
finite length not diverging at Tc. Therefore, near Tc, one has
|D�S |2 ∼ ξ−2

H |�S |2 ∼ τ 3, which is of the same order as the
other terms in the free-energy functional. Note that the fields
�D,S introduced here are not directly related to the normal
modes of the system since the mixed gradient and quartic
terms will lead to mode mixing3 at finite τ . Also note that
although there is a growing disparity of the coherence lengths
at small but finite τ when one approaches critical temperature,
it does not imply that one necessary falls into a type-1.5 regime
because ξ1 < λ < ξ2 is only a necessary but not a sufficient
condition for the appearance of this regime. That is, a system
in some of these cases is type I despite having ξ1 < λ < ξ2.

B. GL theory at finite τ

Unfortunately, the limiting τ → 0 analysis does not have
much physical significance in a generic two-band system. First,
the mean-field theory becomes invalid in the same limit τ → 0,
so the regime where the system is well described by single-
component GL theory can be cut off by critical fluctuations.
More importantly, as we argue below, this analysis is in general
inapplicable for an assessment of, e.g., magnetic response of
the system. The magnetic response is a finite-length scale
property and requires finite-τ theory. Finally, as shown in
microscopic calculations, the masses of the fields in two-band
models in certain cases change rapidly and in a nontrivial way
with decreasing temperature. Thus a limiting τ → 0 analysis in
general cannot give even an approximate physical picture even
at very small τ . In particular this implies that in a two-band
system, a Ginzburg-Landau parameter (which one may in
principle construct in the τ → 0 limit at a mean-field level)
is not a useful characteristic. Rather it is required to make
an accurate quantitative study of two-band theory at finite τ

to determine the conditions under which the model can be
described by single- or two-component GL theory or does not
allow a description by any such GL functionals at all. In order
to do it, we utilize the exact form of the response function R̂−1

(i.e., valid at any T ) found from the linearized microscopic
theory according to the procedure developed in Ref. 2. In
contrast to the GL theory, the microscopic response function
R̂−1(k) has branch cuts along the imaginary axis starting at

point ±ikbc, where kbc = 2
√

�2
02 + (πT )2 (we assume that

�02 < �01). Inside the circle |k| < |kbc| shown by the white
area in Fig. 1(a), the response function is meromorphic, i.e.,
its singular points are only poles shown by the red crosses.
The nonmeromorphic region is marked by the yellow shade in
all panels of Fig. 1. In general, inside the meromorphic circle,
there can be two poles of R̂−1(k) at Im(k) > 0, as shown by
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red crosses in Fig. 1(a). Analogously to TCGL, these poles
determine the masses μL,H of the heavy and light modes, and
thus the corresponding coherence lengths. The contribution
of the branch cut contains the continuous spectrum of length
scales shorter than 1/kbc, which cannot be described within
GL theory. Moreover, for some parameters (e.g., at strong
Josephson coupling), one of the poles which corresponds to
the heavy mode can disappear by merging with the branch cut.
In this case, there is only one fundamental length scale left
since the contribution of the heavy mode cannot be separated
from the branch cut.

The microscopically calculated temperature dependencies
of masses of the modes in a superconductor with weak
interband coupling are shown in Fig. 1(b) by red solid lines.
For a reference, we also plot masses in the U(1) × U(1) theory,
which has two independently diverging coherence lengths at
T = Tc1 and T = Tc2 (chosen to be Tc2 = 0.5Tc1). For coupled
bands, the hybridization of modes removes the divergence at
T = Tc2 and introduces the avoided crossing point of the heavy
and light modes.

Let us now assess the applicability of the minimal TCGL
model given by Eq. (1) without using expansion in powers of
τ . Compared to the previous works,1 we use the more com-
plicated temperature dependence of the coefficients derived
in Appendix A. Let us compare the behavior of the masses
of the modes in the microscopically derived TCGL and a full
microscopic theory. It is shown for the cases of weak and
strong interband coupling in Figs. 1(c) and 1(d). We have
found that TCGL theory describes the lowest characteristic
mass μL(T ) with a very good accuracy near Tc [compare the
blue and red curves in Figs. 1(c) and 1(d)]. Remarkably, when
interband coupling is relatively weak [Fig. 1(c)], the light mode
is quite well described by TCGL also at low temperatures
down to T = 0.5Tc around which the weak band crosses over
from active to passive (proximity-induced) superconductivity.
Indeed, the τ parameter is large in that case and cannot be used
at all to justify a GL expansion. Nonetheless, if the interband
coupling is small, then one does have a small parameter to
implement a GL expansion for one of the components. Namely,
one can still expand, e.g., in the powers of the weak gap
|�2|/πT � 1. On the other hand, for the heavy mode, we
obtain some discrepancies even relatively close to Tc, although
TCGL theory gives a qualitatively correct picture for this mode
when the interband coupling is not too strong. More substantial
discrepancies between TCGL and microscopic theories appear
only at lower temperatures or at stronger interband coupling
[Fig. 1(d)] where the microscopic response function has only
one pole, while TCGL theory generically has two poles.

The comparison of the masses of normal modes of a
U(1) × U(1) (dotted blue lines) and a weakly coupled two-band
U(1) model (red lines) shown in Fig. 1(d) demonstrates
that adding a Josephson coupling removes the divergence
of coherence length of the weak band. This is because
the Josephson coupling represents the explicit symmetry
breakdown from U(1) × U(1) to U(1) and thus eliminates one
of the superconducting phase transitions at lower Tc. However,
when this coupling is weak, one of the coherence lengths has a
substantial peak around that temperature. The peaked behavior
of coherence length near the critical temperature of the weak
superconducting band has a clear physical manifestation in

FIG. 2. (Color online) (a) Sizes of the vortex cores Rc1,2 and
(b) healing lengths Lh1,2 in weak (blue curve, open circles) and strong
(red curve, crosses) bands as functions of temperature. The parameters
are λ11 = 0.5, λ22 = 0.426, λ12 = λ21 = 0.0025, and vF2/vF1 = 1.
In the low-temperature domain, the vortex core size in the weak
component grows and reaches a local maximum near the temperature
Tc2 (the temperature near which the weaker band crosses over from
being active to having superconductivity induced by an interband
proximity effect).2 In the absence of interband coupling, there is
a genuine second superconducting phase transition at Tc2 = 0.5Tc1

where the size of the second core diverges. When interband coupling
is present, it gives an upper bound to the core size in this temperature
domain; nonetheless this regime is especially favorable for the
appearance of type-1.5 superconductivity.2

the temperature dependence of the vortex core size. Let us
note that to assess the overall size of the core requires an
analysis of the full nonlinear theory. In Fig. 2, we plot the
sizes of the vortex cores in weak and strong bands calculated
in the full nonlinear model according to the two alternative
definitions. The first one is the slope of the gap function
distribution at r = 0, which characterizes the width of the
vortex core near the center, Rcj = (d ln �j/dr)−1 (r = 0)
[Fig. 2(a)]. The second one is the healing length Lhj defined as
�j (Lhj ) = 0.95�0j [Fig. 2(b)] (i.e., this length is not directly
related to exponents but quantifies at what length scales the
gap functions almost recover their ground-state values). Both
definitions demonstrate the stretching of the vortex core in
the weak component related to the peak of the coherence
length, as shown in Fig. 1(d). Note that the weak band healing
length Lh2(T ) in Fig. 2(b) has its maximum at the temperature
slightly larger than Tc2, which is consistent with the fact that the
maximum of coherence length ξL (equivalently the minimum
of the field mass μL) in Fig. 1(d) is shifted to the temperature
above Tc2 (Tc2 is defined as the lower critical temperature in
the limit of no Josephson coupling).

C. Effects of higher-order gradient terms

The origin of the small disagreement between the TCGL
and microscopic masses of the heavy mode is the absence of
higher-order gradient terms in expansion (1). The inclusion of
higher-order gradients means adding more terms to the Taylor
expansion of the function R̂(k) which is known to converge
inside the circle |k| < |kbc|. Using this procedure, one can get
a better agreement with microscopic theory [compare green
dashed and red solid lines in Figs. 1(c) and 1(d)]. However,
such an extension is hardly useful because as a byproduct it
generates unphysical artifacts such as many parasitic poles of
the response function R̂−1(k) outside of the circle |k| < |kbc|.
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The position of parasitic poles appearing in the sixth-order
gradient expansion is shown by green circles in Fig. 1(a). These
parasitic poles lie outside the imaginary axis, thus yielding
unphysical oscillating contributions to asymptotical behavior
of the corresponding linear modes.

D. Characteristic length scale of the phase difference variations

In the U(1) × U(1) system, one has two massive modes
associated with the modules of the complex fields and a
Goldstone boson associated with the phase difference. If one
adds a Josephson coupling, there appears also the third mass
parameter. When the Josephson term is present, the phase
difference acquires a preferred value. Its deviations from the
preferred value are characterized by a mass parameter. In
the constant density approximation, the terms of the TCGL
functional that describe the phase difference mode are

1

2

K1K2�
2
10�

2
20

K1�
2
10 + K2�

2
20

[∇(θ1 − θ2)]2 − γ�10�20 cos(θ1 − θ2).

(13)

Expanding the second term gives the mass parameter for the
phase difference mode,

m(θ1−θ2) =
√

γ
K1�

2
10 + K2�

2
20

K1K2�10�20
. (14)

It is useful to consider the behavior of this mass in the limit
T → Tc. In that case, we have �10,20 ∝ √

1 − T/Tc. Thus,

lim
T →Tc

(m(θ1−θ2)) → const. (15)

To summarize this part, we have shown that the TCGL
model of the form given by Eq. (1) with microscopically
derived temperature dependencies of coefficients is overall
highly accurate at elevated temperatures for not too strong
interband coupling. The small discrepancies with microscopic
theory affect only short-length scale physics, which implies
that the TCGL model gives the precise answer for long-range
intervortex forces. Also we find that in some cases, the TCGL
model provides an accurate description of the large length
scale physics at temperatures much lower than Tc. In Appendix
A 1, we discuss the origin of the disagreements between these
results and some of the recent literature.8

IV. VORTEX STRUCTURE: TCGL VERSUS
MICROSCOPIC THEORY

For inhomogeneous situations, such as vortex solutions,
the overall profiles of the fields are affected not only by
fundamental length scales (i.e., coherence lengths) but also
by nonlinear effects.

Let us now study the nonlinear effects case of vortex
solutions. Obviously, because of the growing importance
of nonlinear effects at lower temperatures, Eq. (1) cannot
describe quantitatively well the total structure of vortices when
T � Tc. In Fig. 3, we compare the vortex solutions in the
self-consistent microscopic theory (red dotted curves) and in
the corresponding TCGL theory with coefficients obtained
by expansion (blue dash-dotted curves). One can see that at

FIG. 3. (Color online) Behavior of the gap functions �1,2(r) in
a vortex solution. Comparison of the results of exact microscopic
calculation (red dotted lines), TCGL with microscopically calculated
coefficients (blue dash-dotted lines), and TCGL with phenomeno-
logically fitted coefficients (green dashed lines) at (a) T = 0.98,
(b) T = 0.8, (c) T = 0.7, (d) T = 0.5, (e) T = 0.4, and (f) T = 0.2.
Coupling constants are λ11 = 0.5, λ22 = 0.46, λ12 = λ21 = 0.005,
and vF2/vF1 = 5.

elevated temperatures, the agreement is very good, but for
lower temperatures, there is a growing discrepancy. One of
the reasons behind the discrepancy is the trivial shift of the
ground-state values of the fields by nonlinearities. Note that at
the level of GL theory, the inclusion of more nonlinear terms
merely renormalizes masses and length scales but does not
alter the form of linear theory.3 Thus, in the current example
of the full nonlinear model, it is also reasonable to check if
one could get a better agreement with microscopic theory by
treating the coefficients in the minimal TCGL model given by
Eq. (1) phenomenologically. For all practical purposes, this
provides an alternative route to the more restrictive approach
of finding a refined microscopic expansion. A good agreement
with the microscopic theory in this procedure will imply that
the system does possess an approximate description in terms
of a classical two-component field theory.

We compared the vortex solutions in the TCGL theory with
fitted coefficients and the exact microscopic model for the
particular example of the system with coupling constants λ11 =
0.5, λ22 = 0.46, λ12 = λ21 = 0.005, and vF2/vF1 = 5. The
values of the coefficients which provide the best fit are listed
in Table I.

By the green dashed lines, we show the fits obtained by
setting the values of the TCGL coefficients as listed in Table I.
By doing it, we find that the solutions of microscopic equations
in a large region of parameters can be fitted with excellent

TABLE I. Fitting of TCGL coefficients to match the solutions
of exact microscopic equations. Here we denote the values of
coefficients obtained from microscopic theory as āν , b̄ν , K̄ν , and γ̄ .

T 0.98 0.8 0.7 0.5 0.4 0.2

b1 0.95b̄1 0.85b̄1 0.76b̄1 0.54b̄1 0.44b̄1 0.18b̄1

K1 K̄1 0.8K̄1 0.65K̄1 0.5K̄1 0.4K̄1 0.15K̄1

b2 b̄2 b̄2 b̄2 0.76b̄2 0.64b̄2 0.29b̄2

K2 K̄2 0.55K̄2 0.35K̄2 0.3K̄2 0.15K̄2 0.08K̄2

134514-6



MICROSCOPIC DERIVATION OF TWO-COMPONENT . . . PHYSICAL REVIEW B 85, 134514 (2012)

accuracy by the effective TCGL theory, even at quite low
temperatures. The main discrepancies at very low temperatures
arise due to nonlocal effects, which lead to the disappearance
of the heavy asymptotic mode, as well as due to Kramer-Pesch-
like vortex core shrinking2,9 in both components, which cannot
be captured in the TCGL field theory. Note, however, that even
in the case where the TCGL description starts breaking down,
the discrepancy is mostly pronounced near the origin of the
core, while the soft modes and long-range intervortex inter-
action can be well described by a phenomenological TCGL
theory.

V. CONCLUSIONS

The TCGL model is widely used for describing various
aspects of multiband superconductivity. However, the TCGL
expansion has never been rigorously justified for two-band
systems, and the current literature contains diametrically
opposite claims regarding the validity of the expansion or
such basic aspects as the form of the TCGL functional
and behavior of the coherence lengths near Tc.1,7,8 We
investigated under which conditions a two-band system can
be described by a TCGL theory. First, we obtained a TCGL
model with a microscopically derived temperature dependence
of coefficients (more general than what could be obtained
in a straightforward τ expansion) and demonstrated that it
gives an accurate description of length scales and vortex
solutions at elevated temperatures by a comparison with an
exact microscopic theory. Second, we have shown that in
a much wider range of temperatures, the minimal TCGL
model with phenomenologically adjusted coefficients gives
an accurate description of linear and nonlinear physics such
as vortex excitations and thus the magnetic response of the
system.

The existence of two coherence lengths ξL,ξH along with
the magnetic field penetration lengths λ in the TCGL model
make it impossible in general to define the Ginzburg-Landau
parameter in two-band systems, unless one takes the limit τ →
0. In contrast to U(1) × U(1) superconductors, the two-band
systems have only U(1) symmetry, and as we discussed above
it guarantees that one of the modes drops out of the mean-field
theory in the limit τ → 0, allowing one to define in that limit
κGL = ξL(T → Tc)/λ(T → Tc). However, even slightly away
from the limit τ → 0, when interband coupling is weak, the
ratio ξL/λ has a very strong temperature dependence and the
second mode develops with the coherence ξH . Thus, in general,
κGL cannot be used as a universal characteristic of the magnetic
response of two-band systems.
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APPENDIX A: MICROSCOPIC MODEL AND DERIVATION
OF TCGL

1. Ginzburg-Landau expansion

To derive differential GL equations (6) from the micro-
scopic theory, first we find the solutions of Eilenberger Eqs. (2)
in the form of the expansion by the gap function amplitudes
|�1,2| and their gradients |(Dnp)�1,2|. Then, these solutions
are substituted to the self-consistency given by Eq. (3). Using
this procedure, we find the solutions of Eqs. (2) in the form

f = �

ωn

− |�|2�
2ω3

n

− vF

2ω2
n

(Dnp)� + v2
F

4ω3
n

(Dnp)(Dnp)�,

(A1)

and f +(np) = f ∗(−np). Note that a GL expansion is based
on neglecting the higher-order terms in powers of |�| and
|(Dnp)�|. Indeed, this approximation naturally fails in a
number of cases. In this work, we determine the regimes
when it can be justified, in particular by direct comparison
with an exact microscopic model. Let us determine the
microscopic coefficients in the GL expansion. Substituting to
the self-consistency given by Eqs. (3) and integrating by θp,
we obtain

�1 = (λ11�1 + λ12�2)G + (λ11GL1 + λ12GL2), (A2)

�2 = (λ21�1 + λ22�2)G + (λ21GL1 + λ22GL2), (A3)

where

G = 2
Nd∑
n=0

πT

ωn

, X =
∑
n=0

πT

ω3
n

, (A4)

GLj = X

(
v2

Fj

4
D2�j − |�j |2�j

)
. (A5)

Expressing GLi from the equations above, we obtain

n1GL1 = n1

(
λ22

Detλ̂
− G

)
�1 − λJ n1n2

Detλ̂
�2, (A6)

n2GL2 = n2

(
λ11

Detλ̂
− G

)
�2 − λJ n1n2

Detλ̂
�1. (A7)

Comparing these equations with Eqs. (6), we obtain the
expression for the coefficients,

āi = ρni(λ̄ii + ln T − Gc),

γ̄ = ρn1n2λJ /Det�̂, (A8)

b̄i = ρniX/T 2, K̄i = ρv2
Fi b̄i

/
4,

where λJ = λ21/n1 = λ12/n2. The temperature is normalized
to the Tc. Here, X = 7ζ (3)/8π2, λ̄ij = λ−1

ij , and

Gc = G(Tc) = Trλ̂ −
√

Trλ̂2 − 4Detλ̂

2Detλ̂
.

We have used the expression G(T ) = G(Tc) − ln T . Near the
critical temperature, ln T ≈ −τ , and we obtain āi = niλJ (T −
Ti), where Ti = (1 + Gc − λ̄ii).

2. Remark on τ expansion

Here we comment on the origin of the qualitative dis-
agreement of our result compared to the work in Ref. 8
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which aims at calculating higher-order corrections in τ =
(1 − T/Tc). First, let us make a few general remarks: Note
that in the derivation of TCGL theory, we do not implement
an expansion in powers of τ = (1 − T/Tc). Instead, we retain
more complicated temperature dependence of the coefficients.
Also we stress that any approach to GL expansion depends
on which parameters are assumed to be small; the question is
always how and for which parameters such an assumption
is justified. The principal difference is in the behavior of
the length scales (Ref. 8 asserts that there are two divergent
coherence lengths when τ → 0). It originates in the adoption
in Ref. 8 of a U(1) × U(1) theory as the leading order in
the expansion, following the erroneous derivation in Ref. 7
(see the discussion of the errors in that derivation in Ref. 10).
Another problem with a straightforward implementation of
the expansion by τ is that in general it is uncontrollable
in the next-to-leading order in two-band theories if one
explicitly retains two gap fields. This is because, in contrast
to the single-component GL theory, in general it is not
possible to classify different terms by powers of the parameter
τ . As shown in the main body of the paper, the system
contains a mode with nondiverging coherence length so that
the spatial derivatives in general do not necessarily add
the power of τ . Also, since the work in Ref. 8 uses as a
leading order the incorrect derivation from Ref. 7, it requires
adjustments.

APPENDIX B: ASYMPTOTIC BEHAVIOR
IN TWO-DIMENSIONAL VORTEX PROBLEM

The consideration of asymptotic modes in Sec. III can
be generalized for the two-dimensional axially symmetric
problem, which allows one to treat the asymptotical behavior
of the gap functions far from the vortex core. First of all, in
this case one should substitute the d2/dx2 by ∇2

r = d2/dr2 +
r−1d/dr in Eq. (6).

Choosing the proper value of the mixing angle, the lhs of
Eq. (6) can be diagonalized, and the system acquires the form(∇2

r − μ2
i

)
�i = Ni, (B1)

where the nonlinear NH,L are obtained according to rule (8).
Our interest is the asymptotical behavior of the fields �L,H

determined by the equation above. The solution of Eq. (B1)
can be found in the Fourier-Bessel representation to have the
form (7). In this particular case, the response function is a
diagonal matrix:

R̂(k) =
(

(k2 + μ2
H ) 0

0 (k2 + μ2
L)

)
.

In the real-space domain, the field components can be
expressed with the help of the Fourier-Bessel transform,

�i =
∫ ∞

0
J0(kr1)J0(kr)R̂−1

ij Nj (r1)kdkr1dr1.

The integration by k in this expression can be performed by
transforming the contour in the complex plane. Using the exact
form of the response function, the fields asymptotic are found
to be given by the following expression:

�i(r) = πK0(μir)
∫ r

0
r1dr1I0(μir1)Ni(r1)

+πI0(μir)
∫ ∞

r

r1dr1K0(μir1)Ni(r1), (B2)

where K0 and I0 are modified Bessel functions having the
asymptotics K0,I0(x) ≈ e∓x/

√
x.

The expression (B2) yields length scales characterizing the
asymptotical relaxation of the gap fields. The largest length is
ξL = 1/μL ∼ 1/τ 1/2. However, the presence of another linear
mode in the theory sets the scale which is proportional to
ξH = 1/μH . This scale remains finite even at T = Tc, but its
amplitude vanishes.
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