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We demonstrate a generalization of relativistic quantum mechanics using eight-
component octonic wave function and octonic spatial operators. It is shown that the
second-order equation for octonic wave function describing particles with spin 1/2 can
be reformulated in the form of a system of first-order equations for quantum fields,
which is analogous to the system of Maxwell equations for the electromagnetic field. It
is established that for the special types of wave functions the second-order equation can
be reduced to the single first-order equation analogous to the Dirac equation. At the
same time it is shown that this first-order equation describes particles, which do not
have quantum fields.
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1. Introduction

The relativistic quantum first-order equation has been formulated by P. A. M.

Dirac1,2 in 1928 on the basis of matrix operators and spinor wave function. But as

it was shown in recent years the quadratic form of the Einstein relation for energy

and momentum can be realized by different algebras. In particular, there are various

algebraic approaches to the generalization of the Dirac equation using different sys-

tems of multicomponent hypernumbers such as quaternions,3–6 biquaternions,7,8

octonions9–12 and multivectors generating associative Clifford algebras.13–15 How-

ever, attempts to describe relativistic particles by means of hypercomplex wave

functions and to develop geometrical interpretation of the Dirac equation have not

made appreciable progress. For example, the few attempts to describe relativistic

particles by means of octonion wave functions are confronted by difficulties con-

nected with octonions nonassociativity.10 Moreover, all systems of hypercomplex

numbers, which have been applied up to now for the generalization of quantum
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Table 1. The rules of multiplication and commutation for the octon’s unit vectors.

e1 e2 e3 a0 a1 a2 a3

e1 1 ie3 −ie2 a1 a0 ia3 −ia2

e2 −ie3 1 ie1 a2 −ia3 a0 ia1

e3 ie2 −ie1 1 a3 ia2 −ia1 a0

a0 a1 a2 a3 1 e1 e2 e3

a1 a0 ia3 −ia2 e1 1 ie3 −ie2

a2 −ia3 a0 ia1 e2 −ie3 1 ie1

a3 ia2 −ia1 a0 e3 ie2 −ie1 1

mechanics are the objects of hypercomplex space and do not have any consistent

space-geometric interpretation.

Recently, we proposed eight-component values “octons”16 generating a closed

noncommutative associative algebra and having a clear well-defined geometric inter-

pretation. From the geometrical point of view an octon is the object of the real

three-dimensional space. It is the sum of a scalar, pseudoscalar, vector and pseudo-

vector. In Ref. 17 octons were successfully applied to the generalization of relativis-

tic quantum mechanics on the basis of eight-component octonic wave function and

octonic spatial operators. It was shown that the octonic second-order equation cor-

rectly describes relativistic particles with spin 1/2 in an external electromagnetic

field.

In this paper we propose the system of the first-order octonic equations for

quantum fields analogous to the Maxwell equations for electromagnetic field and

discuss the octonic generalization of the Dirac equation.

2. Octonic Wave Function and Spatial Inversion

We will consider the wave function of a relativistic particle in the form of an eight-

component octon17

ψ̆ = ϕ0 + ϕ1e1 + ϕ2e2 + ϕ3e3 + χ0a0 + χ1a1 + χ2a2 + χ3a3 . (1)

The components ϕα(~r, t) and χα(~r , t) (α = 0, 1, 2, 3) are scalar (complex in general)

functions of spatial coordinates and time. The values ek (k = 1, 2, 3) are axial unit

vectors, ak are polar unit vectors, a0 is the pseudoscalar unit. The algebra of octons

was discussed in detail in Ref. 16. Here we briefly recall the rules of multiplication

and commutation for octonic basis elements, which are represented in Table 1. In

Table 1 and below the value i is the imaginary unit (i2 = −1).

We can indicate some connection between octonic algebra and algebra of quater-

nions. Indeed, it is easy to see that the rules of octonic multiplication and com-

mutation take place for the values based on the quaternionic imaginary units qk
(k = 1, 2, 3; q2k = −1)

ek = iqk , ak = iqka0 ,

but it needs the introduction of a new (nonquaternionic) pseudoscalar element a0.
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Besides, we can introduce the generators

g±l =
1

2i
(al ± el) (l = 1, 2, 3) , (2)

which have the “quaternionic” rules of multiplication and commutation:

g±l g
±
m = Elmng

±
n , g±l g

∓
m = 0 (m,n = 1, 2, 3) , (3)

where Elmn is the unit antisymmetric tensor. At that the values P± = 1
2
(1 ± a0)

are projectors:

P±g±l = g±l P
± = g±l , P±g∓l = g∓l P

± = 0 ,

g±l g
±
l = P± , P±P± = P± .

(4)

The octonic wave function (1) can also be written in the compact form

ψ̆ = ϕ0 +
↔

ϕ + χ̃0 + ~χ , (5)

where the pseudovector part is indicated by a double arrow “↔ ,” the pseudoscalar

part by a wave “∼” and the vector part by an arrow “→ .” Note that unit elements

of octonic basis ek and ak play the role of some octonic operators êk and âk ,

which transform the spatial structure of the wave function by means of octonic

multiplication. For example, the action of the operator â1 can be represented as

octonic multiplication of the unit vector a1 and octon ψ̆:

â1ψ̆ = a1ψ̆ = χ1 + χ0e1 − iχ3e2 + iχ2e3 + ϕ1a0 + ϕ0a1 − iϕ3a2 + iϕ2a3 . (6)

The matrix representation of octonic spatial operators and their eigenfunctions were

considered in Ref. 17. Further, we will use symbolic designations êk and âk in the

operator part of equations but ek and ak designations in wave functions.

Let us define the operation of local spatial inversion (R) of octonic wave function.

This operation reverses the vector component of the wave function and changes

the sign of the pseudoscalar component. In particular, the simplest octonic wave

functions corresponding to the elements of octon’s basis are transformed under

spatial inversion in accordance with the following rules:

R : ak ⇒ −ak , (7)

R : ek ⇒ ek , (8)

R : a0 ⇒ −a0 . (9)

The operation of spatial inversion is realized by operator R̂, which changes the

signs of vector and pseudoscalar components of the wave function:

R̂
(

ϕ0 +
↔

ϕ + χ̃0 + ~χ
)

=
(

ϕ0 +
↔

ϕ − χ̃0 − ~χ
)

, (10)

R̂2 = 1 . (11)

We specially emphasize that the operator R̂ does not transform arguments of

the wave function, i.e. for example R̂~χ(x, y, z, t) = −~χ(x, y, z, t). The important
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property of operator R̂ is the anticommutation with â0, â1, â2, â3 and the com-

mutation with ê1, ê2, ê3 operators. Indeed, it is simple to check directly that

R̂â0ψ̆ = −â0R̂ψ̆ , (12)

R̂âkψ̆ = −âkR̂ψ̆ , (13)

R̂êkψ̆ = êkR̂ψ̆ . (14)

3. The System of Octonic First-Order Equations for

Quantum Fields

Formally the octonic relativistic second-order equation17 corresponding to the

Einstein relation for energy and momentum

(

1

c

∂

∂t
− ~∇

)(

1

c

∂

∂t
+ ~∇

)

ψ̆ = −
m2c2

~2
ψ̆ (15)

is similar to the octonic wave equation16 for the potentials of electromagnetic field.

Therefore in the relativistic octonic quantum mechanics we can define some quan-

tum fields, which will satisfy the first-order equations analogous to the Maxwell

equations.

Indeed, by means of operator R̂, which anticommutes with operator ~∇ equation

(15) can be represented in the form

(

1

c

∂

∂t
− ~∇ − i

mc

~
R̂

)(

1

c

∂

∂t
+ ~∇ + i

mc

~
R̂

)

ψ̆ = 0 , (16)

where the left part is the octonic product of two octonic operators. The representa-

tion (16) allows one to define quantum fields, which satisfy a system of first-order

equations. The derivation of first-order equations is analogous to the procedure of

obtaining the Maxwell equations in the octonic electrodynamics.16 Let us consider

the sequential action of operators in (16). After the action of the first operator we

obtain the following expression:

(

1

c

∂

∂t
+ ~∇ + i

mc

~
R̂

)

(

ϕ0 +
↔

ϕ + χ̃0 + ~χ
)

=
1

c

∂ϕ0

∂t
+

1

c

∂
↔

ϕ

∂t
+

1

c

∂χ̃0

∂t
+

1

c

∂~χ

∂t
+ ~∇ϕ0 +

(

~∇ ·
↔

ϕ
)

+
[

~∇ ×
↔

ϕ
]

+ ~∇χ̃0 + (~∇ · ~χ) +
[

~∇ × ~χ
]

+ i
mc

~
ϕ0 + i

mc

~

↔

ϕ − i
mc

~
χ̃0 − i

mc

~
~χ , (17)

which enables definition of quantum fields on the basis of the wave function. (The

operations of scalar ( ·) and vector [× ] octonic multiplication were considered in
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Ref. 16). We will indicate these fields by index ψ:

eψ =
1

c

∂ϕ0

∂t
+ (~∇ · ~χ) + i

mc

~
ϕ0 , (18)

~Eψ = −~∇ϕ0 −
1

c

∂~χ

∂t
+ i

mc

~
~χ −

[

~∇ ×
↔

ϕ
]

, (19)

h̃ψ =
i

c

∂χ̃0

∂t
+ i

(

~∇ ·
↔

ϕ
)

+
mc

~
χ̃0 , (20)

↔

Hψ = −i
[

~∇ × ~χ
]

− i~∇χ̃0 −
i

c

∂
↔

ϕ

∂t
+
mc

~

↔

ϕ . (21)

Here eψ is an intensity of scalar field, ~Eψ is an intensity of vector field, h̃ψ is an

intensity of pseudoscalar field and
↔

Hψ is an intensity of pseudovector field. Using

fields definition, expression (17) can be rewritten in the form

(

1

c

∂

∂t
+ ~∇ + i

mc

~
R̂

)

ψ̆ = eψ − ~Eψ − ih̃ψ + i
↔

Hψ . (22)

Then from (16) we get the equation for the quantum fields

(

1

c

∂

∂t
− ~∇ − i

mc

~
R̂

)

(

eψ − ~Eψ − ih̃ψ + i
↔

Hψ

)

= 0 . (23)

Performing octonic multiplication and separating scalar, pseudoscalar, vector and

pseudovector parts we obtain the system of first-order equations analogous to the

Maxwell equations:

(~∇ · ~Eψ) = −
1

c

∂eψ

∂t
+ i

mc

~
eψ — is scalar part , (24)

(

~∇ ·
↔

Hψ

)

= −
1

c

∂h̃ψ

∂t
− i

mc

~
h̃ψ — is pseudoscalar part , (25)

[

~∇ ×
↔

Hψ

]

=
i

c

∂ ~Eψ

∂t
+ i~∇eψ −

mc

~

~Eψ — is vector part , (26)

[~∇ × ~Eψ ] = −
i

c

∂
↔

Hψ

∂t
− i~∇h̃ψ −

mc

~

↔

Hψ — is pseudovector part . (27)

This system is absolutely equivalent to Eq. (16).

If we restrict the class of wave functions we can construct two-vector first-order

equations for fields ~Eψ and
↔

Hψ only. At that the conditions eψ = 0 and h̃ψ = 0

lead to the following “gauge” relations for the wave function:

1

c

∂ϕ0

∂t
+ (~∇ · ~χ) + i

mc

~
ϕ0 = 0 , (28)

1

c

∂χ̃0

∂t
+

(

~∇ ·
↔

ϕ
)

− i
mc

~
χ̃0 = 0 . (29)
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Under the conditions (28), (29) the equations for quantum fields can be written as

(~∇ · ~Eψ) = 0 , (30)

(

~∇ ·
↔

Hψ

)

= 0 , (31)

[

~∇ ×
↔

Hψ

]

=
i

c

∂ ~Eψ

∂t
−
mc

~

~Eψ , (32)

[~∇ × ~Eψ] = −
i

c

∂
↔

Hψ

∂t
−
mc

~

↔

Hψ . (33)

In contrast to Proca equations18–20 (enclosing field’s intensities and potentials)

which describe massive particles with spin 1 (see also generalized theory of inte-

ger spin in Refs. 21–23), the system (30)–(33) consists of equations for the field’s

intensities only and describes particles with spin 1/2. Note that if we take in (30)–

(33) the mass equal to zero and choose the wave function as the four component

potential of electromagnetic field then the system (30)–(33) will coincide with the

Maxwell equations, and the condition (28) will coincide with the Lorentz gauge.

The system of equations (24)–(27) can be generalized for a particle in an external

electromagnetic field. In this case we have to change operators in (16) by

∂

∂t
→

∂

∂t
+ i

e

~
Φ , ~∇ → ~∇ − i

e

~c
~A . (34)

Then we obtain the equation

(

1

c

∂

∂t
+ i

e

~c
Φ− ~∇ + i

e

~c
~A− i

mc

~
R̂

)

×

(

1

c

∂

∂t
+ i

e

~c
Φ+ ~∇ − i

e

~c
~A+ i

mc

~
R̂

)

ψ̆ = 0 . (35)

After the action of the first operator we have

(

1

c

∂

∂t
+ i

e

~c
Φ+ ~∇ − i

e

~c
~A+ i

mc

~
R̂

)

(

ϕ0 +
↔

ϕ + χ̃0 + ~χ
)

=
1

c

∂ϕ0

∂t
+

1

c

∂
↔

ϕ

∂t
+

1

c

∂χ̃0

∂t
+

1

c

∂~χ

∂t
+ i

e

~c
Φϕ0 + i

e

~c
Φ
↔

ϕ

+ i
e

~c
Φχ̃0 + i

e

~c
Φ~χ + ~∇ϕ0 +

(

~∇ ·
↔

ϕ
)

+
[

~∇ ×
↔

ϕ
]

+ ~∇χ̃0 + (~∇ · ~χ) + [~∇ × ~χ
]

− i
e

~c
~Aϕ0 − i

e

~c

(

~A ·
↔

ϕ
)

− i
e

~c

[

~A×
↔

ϕ
]

− i
e

~c
~Aχ̃0 − i

e

~c
( ~A · ~χ) − i

e

~c
[ ~A× ~χ]

+ i
mc

~
ϕ0 + i

mc

~

↔

ϕ − i
mc

~
χ̃0 − i

mc

~
~χ . (36)
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In this case the quantum fields can be defined as

eψ =
1

c

∂ϕ0

∂t
+ (~∇ · ~χ) + i

mc

~
ϕ0 + i

e

~c
Φϕ0 − i

e

~c
( ~A · ~χ) , (37)

~Eψ = −~∇ϕ0 −
1

c

∂~χ

∂t
+ i

mc

~
~χ −

[

~∇ ×
↔

ϕ
]

− i
e

~c
Φ~χ + i

e

~c
ϕ0
~A+ i

e

~c

[

~A×
↔

ϕ
]

, (38)

h̃ψ = i
1

c

∂χ̃0

∂t
+ i

(

~∇ ·
↔

ϕ
)

+
mc

~
χ̃0 −

e

~c
Φχ̃0 +

e

~c

(

~A ·
↔

ϕ
)

, (39)

↔

Hψ = −i[~∇ × ~χ] − i~∇χ̃0 − i
1

c

∂
↔

ϕ

∂t
+
mc

~

↔

ϕ

+
e

~c
Φ
↔

ϕ −
e

~c
[ ~A× ~χ ] −

e

~c
χ̃0
~A . (40)

Then (36) can be represented as
(

1

c

∂

∂t
+ i

e

~c
Φ+ ~∇ − i

e

~c
~A+ i

mc

~
R̂

)

ψ̆ = eψ − ~Eψ − ih̃ψ + i
↔

Hψ (41)

and Eq. (35) for the quantum fields takes the form
(

1

c

∂

∂t
+ i

e

~c
Φ− ~∇ + i

e

~c
~A− i

mc

~
R̂

)

(

eψ − ~Eψ − ih̃ψ + i
↔

Hψ

)

= 0 . (42)

Performing the octonic multiplication in (42) and separating scalar, pseudoscalar,

vector and pseudovector parts we obtain the system of the equations for quantum

field’s intensities

(~∇ · ~Eψ) = −
1

c

∂eψ

∂t
− i

e

~c
Φeψ + i

e

~c
( ~A · ~Eψ) + i

mc

~
eψ , (43)

[

~∇ ×
↔

Hψ

]

= i
1

c

∂ ~Eψ

∂t
−

e

~c
Φ~Eψ + i~∇eψ +

e

~c
~Aeψ

+ i
e

~c

[

~A×
↔

Hψ

]

−
mc

~

~Eψ , (44)

(

~∇ ·
↔

Hψ

)

= −
1

c

∂h̃ψ

∂t
− i

e

~c
Φh̃ψ + i

e

~c

(

~A ·
↔

Hψ

)

− i
mc

~
h̃ψ , (45)

[~∇ × ~Eψ] = −i
1

c

∂
↔

Hψ

∂t
+

e

~c
Φ
↔

Hψ − i~∇h̃ψ

+ i
e

~c
[ ~A× ~Eψ] −

e

~c
~Ah̃ψ −

mc

~

↔

Hψ . (46)

The system (43)–(46) is absolutely equivalent to the octonic equation (35).

Note that on the basis of systems (24)–(27), (30)–(33) and (43)–(46) one can

obtain the quadratic forms analogous to the relations for energy and momentum as

well as for Lorenz invariants of electromagnetic field.16
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4. Octonic First-Order Equation

As it was shown in Ref. 17 the spin interaction of the particle with electromagnetic

field can be described by the octonic second-order equation. At that in contrast

to the Dirac theory the terms describing the interaction of spin 1/2 with electric

and magnetic fields are appeared in the octonic second-order equation as a result

of octonic multiplication without attraction of the first-order equation. However,

in octonic quantum mechanics we can also construct the Dirac’s-like first-order

equations.

Let us turn to the octonic equation (15):
(

1

c

∂

∂t
− ~∇

)(

1

c

∂

∂t
+ ~∇

)

ψ̆ = −
m2c2

~2
ψ̆ . (47)

In this equation we can formally denote the result of action of one operator on

function ψ̆ as some new octonic function W̆ :
(

1

c

∂

∂t
+ ~∇

)

ψ̆ = −
mc

~
W̆ . (48)

Then the second-order equation (47) is equivalent to the system of two first-order

equations:
(

1

c

∂

∂t
+ ~∇

)

ψ̆ = −
mc

~
W̆ , (49)

(

1

c

∂

∂t
− ~∇

)

W̆ =
mc

~
ψ̆ . (50)

Acting on Eq. (50) by the operator of spatial inversion R̂ we get
(

1

c

∂

∂t
+ ~∇

)

ψ̆ =
mc

~
(−W̆ ) , (51)

(

1

c

∂

∂t
+ ~∇

)

R̂W̆ =
mc

~
R̂ψ̆ . (52)

On some conditions Eqs. (51), (52) can be absolutely equivalent. For that functions

W̆ and ψ̆ should satisfy the following relations:

ψ̆ = ηR̂W̆ , (53)

−W̆ = ηR̂ψ̆ , (54)

where η is some constant. In particular for scalar η we obtain η = ±i. So if the

accessory function W̆ satisfies the condition

W̆ = ±iR̂ψ̆ , (55)

then the wave function ψ̆ satisfies the first-order equation. The sign in (55) can be

chosen arbitrarily. If W̆ = +iR̂ψ̆ the first-order equation is
(

1

c

∂

∂t
+ ~∇ + i

mc

~
R̂

)

ψ̆ = 0 . (56)
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Note that we can also act by R̂ on Eq. (49). Then we get an equation with

other sign before the gradient operator. Thus the octonic first-order equation can

be written in four different forms:
(

1

c

∂

∂t
+ ~∇ + i

mc

~
R̂

)

ψ̆ = 0 , (57)

(

1

c

∂

∂t
+ ~∇ − i

mc

~
R̂

)

ψ̆ = 0 , (58)

(

1

c

∂

∂t
− ~∇ + i

mc

~
R̂

)

ψ̆ = 0 , (59)

(

1

c

∂

∂t
− ~∇ − i

mc

~
R̂

)

ψ̆ = 0 . (60)

Note that the octon’s algebra17 is isomorphic to the Dirac matrixes algebra and

Eqs. (57)–(60) are analogous to the Dirac equation.

Each Eqs. (57)–(60) is equivalent to the system of eight scalar equations for the

components of the octonic wave function. If we search the solution to (57)–(60) as

the plane wave

ψ̆ ∼ exp

{

i

~
(−Et+ pxx+ pyy + pzz)

}

, (61)

then the dispersion relation is

(E2
− p2c2 −m2c4)4 = 0 , (62)

where p2 = p2
x + p2

y + p2
z. The roots of Eq. (62) E = ±

√

p2c2 +m2c4 are fourthly

degenerate.

There is also the inverse procedure of obtaining the second-order equation

analogous to procedure used in the Dirac theory. For example, acting on Eq. (57)

by operator
(

1

c

∂

∂t
− ~∇ − i

mc

~
R̂

)

, (63)

we get the following equation:
(

1

c

∂

∂t
− ~∇ − i

mc

~
R̂

)(

1

c

∂

∂t
+ ~∇ + i

mc

~
R̂

)

ψ̆ = 0 . (64)

However, we specially emphasize though Eq. (64) coincides in form with the

second-order equation (16), but the solutions to (64) should also satisfy the first-

order equation (57) simultaneously. The similar procedure can be specified for any

Eq. (57)–(60).

Equations (57)–(60) can be generalized for a particle in the electromagnetic

field using substitutions (34). For example in the presence of electromagnetic field
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Eq. (57) can be rewritten in the form
(

1

c

∂

∂t
+ i

e

~c
Φ+ ~∇ − i

e

~c
~A+ i

mc

~
R̂

)

ψ̆ = 0 . (65)

The first-order equations have an interesting interpretation. Since the operators

in Eqs. (57) and (65) coincide with operators used in expressions (17) and (36) for

the definition of quantum field’s intensities (18)–(21) and (37)–(40) (see also (22)

and (41)), then in fact the first-order equations (57) and (65) describe the particles,

which do not have the quantum fields eψ, ~Eψ, h̃ψ,
↔

Hψ.

5. Conclusion

We showed that in the frames of octonic quantum mechanics the second-order wave

equation describing the particles with spin 1/2 can be reformulated in the form of

the system of the first-order Maxwell’s-like equations for the quantum fields. It was

demonstrated that for the special class of wave functions the octonic second-order

equation can be reduced to the single octonic first-order equation analogous to the

Dirac equation. At the same time it was shown that the Dirac’s-like first-order

equations describe particles, which do not have quantum fields.

Thus we showed that particles with spin 1/2 can be described by two different

(first-order and second-order) octonic equations. We assume that these equations

describe the particles of different types. Probably the second-order equation tolerat-

ing the quantum fields introduction describes the baryons while the first-order equa-

tion describes the leptons.
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