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In this paper we represent eight-component values “octons,” generating associative
noncommutative algebra. It is shown that the electromagnetic field in a vacuum can
be described by a generalized octonic equation, which leads both to the wave
equations for potentials and fields and to the system of Maxwell’s equations. The
octonic algebra allows one to perform compact combined calculations simulta-
neously with scalars, vectors, pseudoscalars, and pseudovectors. Examples of such
calculations are demonstrated by deriving the relations for energy, momentum, and
Lorentz invariants of the electromagnetic field. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3041499�

I. INTRODUCTION

Hypercomplex numbers1–4 especially quaternions are widely used in relativistic mechanics,
electrodynamics, quantum mechanics, and quantum field theory3–10 �see also the bibliographical
review Ref. 11�. The structure of quaternions with four components �scalar and vector� corre-
sponds to the relativistic space-time structure, which allows one to realize the quaternionic gen-
eralization of quantum mechanics.5–8 However, quaternions do not include pseudoscalar and
pseudovector components. Therefore for describing all types of physical values the eight-
component hypercomplex numbers enclosing scalars, vectors, pseudoscalars, and pseudovectors
are more appropriate.

The idea of applying the eight-component hypercomplex numbers for the description of the
electromagnetic field is quite natural since Maxwell’s equations are the system of four equations
for scalar, vector, pseudoscalar, and pseudovector values. There are a lot of papers that describe
the attempts to realize representations of Maxwell equations using different eight-component
hypercomplex numbers such as biquaternions,4,12,13 octonions,14–16 and multivectors generating
the associative Clifford algebras.17–19 However, all considered systems of hypercomplex numbers
do not have a consistent vector interpretation, which leads to difficulties in the description of
vectorial electromagnetic fields.

This paper is devoted to describing electromagnetic fields on the basis of eight-component
values “octons,” which generate associative noncommutative algebra and have the clearly defined
simple geometric sense. The paper has the following structure. In Sec. II we consider the pecu-
liarities of the eight-component octonic algebra. In Sec. III the generalized octonic equations for
the electromagnetic field in a vacuum are formulated. In Sec. IV the derivations of the relations for
energy, momentum, and Lorentz invariants of electromagnetic field are demonstrated.

II. ALGEBRA OF OCTONS

The values of four types �scalars, vectors, pseudoscalars, and pseudovectors� differing with
respect to spatial inversion are used for the description of the electromagnetic field. All these
values can be integrated into one spatial object. For this purpose in the present paper we propose
the special eight-component values, which will be named octons for short.

The eight-component octon Ğ is defined by the following expression:
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Ğ = c0e0 + c1e1 + c2e2 + c3e3 + d0a0 + d1a1 + d2a2 + d3a3, �1�

where e0�1, values e1, e2, and e3 are axial unit vectors �pseudovectors�, a0 is the pseudoscalar
unit, a1, a2, and a3 are polar unit vectors. The octonic components cn and dn �n=0,1 ,2 ,3� are
numbers �complex, in general�. Thus the octon is the sum of a scalar, pseudovector, pseudoscalar,
and vector. The full octon basis is

e0,e1,e2,e3,a0,a1,a2,a3. �2�

The rules for multiplication of polar and axial basis vectors are formulated taking into account
the symmetry of their products with respect to the operation of spatial inversion. For polar unit
vectors ak �k=1,2 ,3� the following rules of multiplication take place:

ak
2 = 1, �3�

a jak = − aka j �for j � k, j = 1,2,3� . �4�

The conditions �4� describe the property of noncommutativity for vector product. The same
rules are defined for axial unit vector multiplication,

ek
2 = 1, �5�

e jek = − eke j �for j � k� . �6�

The rules �3�–�6� allow one to represent the length square of any polar or axial vector as the
sum of squares of its components. We emphasize that the square of vector length is positively
defined. The rules �3� and �5� lead to some special requirements for the vector product in octonic
algebra. Let a1, a2, a3 and e1, e2, e3 be the right Cartesian bases and corresponding unit vectors are
parallel to each other. Taking into consideration �3�–�5� and the fact that the product of two
different polar vectors is an axial vector, we can represent the rules for cross multiplication of
polar unit vectors in the following way:

a1a2 = ie3, a2a3 = ie1, a3a1 = ie2, �7�

where i is the imaginary unit. Then the rules of multiplication for axial basis units can be written

e1e2 = ie3, e2e3 = ie1, e3e1 = ie2. �8�

Let us define the pseudoscalar unit a0 as the product of parallel unit vectors corresponding to
the different bases,

a0 = akek. �9�

Squaring �9� we can see that a0
2=1. Note that the unit a0 commutates with each unit vector.

Summarized commutation and multiplication rules are represented in Table I.

TABLE I. The rules of multiplication and commutation for the octon’s unit vectors.

e1 e2 e3 a0 a1 a2 a3

e1 1 ie3 −ie2 a1 a0 ia3 −ia2

e2 −ie3 1 ie1 a2 −ia3 a0 ia1

e3 ie2 −ie1 1 a3 ia2 −ia1 a0

a0 a1 a2 a3 1 e1 e2 e3

a1 a0 ia3 −ia2 e1 1 ie3 −ie2

a2 −ia3 a0 ia1 e2 −ie3 1 ie1

a3 ia2 −ia1 a0 e3 ie2 −ie1 1
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We would like to emphasize especially that octonic algebra is associative. The property of
associativity follows directly from multiplication rules.

Thus the octon Ğ �1� is the sum of the scalar value c0, the pseudovector value �axial vector�
cJ=c1e1+c2e2+c3e3, the pseudoscalar value d̃0=d0a0, and the vector value �polar vector� d� =d1a1
+d2a2+d3a3,

Ğ = c0 + cJ+ d̃0 + d� .

Hereinafter octons will be indicated by the “�” symbol, pseudovectors by a double arrow
“↔,” pseudoscalars by a wave “�,” and vectors by an arrow “→.” The values ck and dk �k
=1,2 ,3� are the projections of the axial vector cJ and the polar vector d� on the corresponding unit
vector directions. Note, that equality of two octons means the equality of all corresponding com-
ponents.

Let us consider the rules of multiplication of two octons in detail. First, the result of octonic

multiplication of two polar vectors d�1 and d�2 is the sum of scalar and pseudovector values,

d�1d�2 = �d11a1 + d12a2 + d13a3��d21a1 + d22a2 + d23a3� = �d11d21 + d12d22 + d13d23� + i�d12d23

− d13d22�e1 + i�d13d21 − d11d23�e2 + i�d11d22 − d12d21�e3. �10�

Hereinafter we will denote the scalar multiplication �internal product� by the symbol “·” and
round brackets,

�cJ1 · cJ2� = c11c21 + c12c22 + c13c23,

�d�1 · d�2� = d11d21 + d12d22 + d13d23,

�cJ · d�� = �c1d1 + c2d2 + c3d3�a0.

Vector multiplication �external product� will be denoted by the symbol “�” and square brack-
ets,

�cJ1 � cJ2� = i�c12c23 − c13c22�e1 + i�c13c21 − c11c23�e2 + i�c11c22 − c12c21�e3,

�d�1 � d�2� = i�d12d23 − d13d22�e1 + i�d13d21 − d11d23�e2 + i�d11d22 − d12d21�e3,

�cJ� d�� = i�c2d3 − c3d2�a1 + i�c3d1 − c1d3�a2 + i�c1d2 − c2d1�a3.

In all other cases round and square brackets will be used for the priority definition. Thus
taking into account the considered designations, the octonic product of two vectors �10� can be
represented as the sum of scalar and vector products,

d�1d�2 = �d�1 · d�2� + �d�1 � d�2� .

Then the product of two octons can be represented in the following form:

Ğ1Ğ2 = �c10 + cJ1 + d̃10 + d�1��c20 + cJ2 + d̃20 + d�2� = c10c20 + c10cJ2 + c10d̃20 + c10d�2 + c20cJ1 + �cJ1 · cJ2�

+ �cJ1 � cJ2� + d̃20cJ1 + �cJ1 · d�2� + �cJ1 � d�2� + d̃10c20 + d̃10cJ2 + d̃10d̃20 + d̃10d�2 + c20d�1 + �d�1 · cJ2�

+ �d�1 � cJ2� + d̃20d�1 + �d�1 · d�2� + �d�1 � d�2� .

Some correspondence between the algebra of octons and Gibbs vector algebra was discussed
in Ref. 20. We can also indicate some connection between octonic algebra and algebra of quater-
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nions. Indeed it is easy to see that the rules of octonic multiplication and commutation take place
for the values based on the quaternionic imaginary units qk �k=1,2 ,3; qk

2=−1�,

ek = iqk, ak = iqka0,

but it needs the introduction of a new �nonquaternionic� pseudoscalar element a0.
In conclusion in this section we would like to note that formally the algebra of octons can be

considered as the variant of complexified Clifford algebra. However, in contrast to Clifford alge-
bra the octonic unit vectors a1, a2, a3 and e1, e2, e3 are the real true vectors but not complex
numbers. In this connection octons have a clear well-defined space-geometry sense.

III. OCTONIC FORM OF ELECTRODYNAMICS EQUATIONS

The octonic algebra can be naturally applied to the description of the electromagnetic field in
a vacuum. The potential of the electromagnetic field is represented as an incomplete four-
component octon,

�̆ = � + A� = � + A1a1 + A2a2 + A3a3,

where � is the scalar potential and A� is the vector potential. The four-component current also can
be defined as an incomplete octon,

J̆ = 4�� +
4�

c
j� = 4�� +

4�

c
�j1a1 + j2a2 + j3a3� .

Then using the octonic differentiation operator

P̂ = 	1

c

�

�t
+ �� 
 = 	1

c

�

�t
+

�

�x1
a1 +

�

�x2
a2 +

�

�x3
a3


and conjugated operator

P̂+ = 	1

c

�

�t
− �� 
 = 	1

c

�

�t
−

�

�x1
a1 −

�

�x2
a2 −

�

�x3
a3
 ,

we can write the generalized equation of electrodynamics in the compact octonic form,

P̂+P̂�̆ = J̆ . �11�

Indeed multiplying P̂+ and P̂ operators in �11�, we obtain the wave equation for potentials of
electromagnetic field in the form

	 1

c2

�2

�t2 − � − ��� � �� �
�̆ = J̆ . �12�

For the potentials described by twice differentiable functions ��� ��� ��̆=0, Eq. �12� becomes

	 1

c2

�2

�t2 − �
�̆ = J̆ . �13�

Separating scalar and vector parts in �13�, we obtain ordinary wave equations for the scalar
and vector potentials,

1

c2

�2�

�t2 − �� = 4�� ,
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1

c2

�2A�

�t2 − �A� =
4�

c
j�.

On the other hand, applying in Eq. �11� operators P̂ and P̂+ one after another to the octonic

potential �̆, we can obtain first

P̂�̆ = 	1

c

�

�t
+ �� 
�� + A� � =

1

c

��

�t
+ �� � +

1

c

�A�

�t
+ ��� · A� � + ��� � A� � . �14�

We will use the standard definitions of the electric and magnetic fields in octonic form,

E� = −
1

c

�A�

�t
− �� �, HJ = − i��� � A� � .

Taking into account Lorentz gauge condition

1

c

��

�t
+ ��� · A� � = 0,

we can rewrite the result of P̂ operation in �14� as

P̂�̆ = − E� + iHJ , �15�

where in the right part of �15� the octon of electromagnetic field F̆ is written

F̆ = − E� + iHJ .

Consequently Eq. �11� becomes

P+F̆ = J̆ . �16�

Applying the operator P̂+ to the octon of the electromagnetic field F̆, we get

i

c

�HJ

�t
− i��� · HJ� − i��� � HJ� −

1

c

�E�

�t
+ ��� · E� � + ��� � E� � = 4�� +

4�

c
j�. �17�

Separating scalar, vector, pseudoscalar, and pseudovector terms in Eq. �17�, we get the system
of Maxwell equations in octonic form

��� · E� � = 4�� �scalar term� ,

��� � E� � = −
i

c

�HJ

�t
�pseudovector term� ,

��� · HJ� = 0 �pseudoscalar term� ,

��� � HJ� =
4�i

c
j� +

i

c

�E�

�t
�vector term� . �18�

The system �18� coincides with Maxwell equations.

Applying operator P̂ to both parts of Eq. �16�, one can obtain the wave equation for E� and HJ

fields,
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	 1

c2

�2

�t2 + �
�iHJ − E� � =
4�

c

��

�t
+ 4��� � +

4�

c2

� j�

�t
+

4�

c
��� · j�� +

4�

c
��� � j�� .

Separating scalar, vector, pseudoscalar, and pseudovector terms, we obtain the system of three
equations,

1

c2

�2E�

�t2 + �E� = − 4��� � −
4�

c2

� j�

�t
,

1

c2

�2HJ

�t2 + �HJ = −
4�

c
i��� � j�� ,

��

�t
+ ��� · j�� = 0. �19�

The first two equations in �19� are the wave equations for electric and magnetic fields and the
third one is the continuity equation.

IV. RELATIONS FOR ENERGY, MOMENTUM, AND LORENTZ INVARIANTS OF
ELECTROMAGNETIC FIELD

The octonic algebra allows one to provide the combined calculus with different types of
values simultaneously. For example, in this section we obtain the relations for energy, momentum,
and Lorentz invariants of electromagnetic field.

Multiplying both parts of expression �17� on octon �E� + iHJ� from the left, we can obtain the
following octonic equation:

�E� + iHJ�	 i

c

�HJ

�t
− i��� · HJ� − i��� � HJ� −

1

c

�E�

�t
+ ��� · E� � + ��� � E� �
 = �E� + iHJ�	4�� +

4�

c
j�
 .

After multiplication we get

i

c
	E� ·

�HJ

�t

 +

i

c
�E� �

�HJ

�t
� −

1

c
	HJ ·

�HJ

�t

 −

1

c
�HJ �

�HJ

�t
� − iE� ��� · HJ� + HJ��� · HJ� − i�E� · ��� � HJ��

− i�E� � ��� � HJ�� + �HJ · ��� � HJ�� + �HJ � ��� � HJ�� −
1

c
	E� ·

�E�

�t

 −

1

c
�E� �

�E�

�t
�

−
i

c
	HJ ·

�E�

�t

 −

i

c
�HJ �

�E�

�t
� + E� ��� · E� � + iHJ��� · E� � + �E� · ��� � E� �� + �E� � ��� � E� ��

+ i�HJ · ��� � E� �� + i�HJ � ��� � E� �� = 4��E� + i4��HJ +
4�

c
�j� · E� � −

4�

c
�j� � E� � + i

4�

c
�j� · HJ�

− i
4�

c
�j� � HJ� . �20�

Separating in �20� values of different types �scalar, vector, pseudoscalar, and pseudovector� we
obtain four relations. The scalar part of Eq. �20� is written

−
1

c
	E� ·

�E�

�t

 −

1

c
	HJ ·

�HJ

�t

 − i�E� · ��� � HJ�� + i�HJ · ��� � E� �� =

4�

c
�j� · E� � .

Taking into account
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	HJ ·
�HJ

�t

 =

1

2

�

�t
�HJ · HJ� =

1

2

�

�t
HJ2,

	E� ·
�E�

�t

 =

1

2

�

�t
�E� · E� � =

1

2

�

�t
E� 2,

as well as

��� · �E� � HJ�� = �HJ · ��� � E� �� − �E� · ��� � HJ�� ,

we obtain the following expression:

�

�t
	E� 2 + HJ2

8�

 −

c

4�
i��� · �E� � HJ�� + �j� · E� � = 0,

which is the well known Poynting theorem.
The pseudoscalar part of Eq. �20� is

i

c
	E� ·

�HJ

�t

 −

i

c
	HJ ·

�E�

�t

 + �HJ · ��� � HJ�� + �E� · ��� � E� �� =

4�

c
i�j� · HJ� . �21�

The expression �21� is the trivial corollary, which follows from vector and pseudovector
Maxwell equations �18�.

The vector part of Eq. �20� is

i

c
�E� �

�HJ

�t
� −

i

c
�HJ �

�E�

�t
� + HJ��� · HJ� + �HJ � ��� � HJ�� + E� ��� · E� � + �E� � ��� � E� ��

= 4��E� −
4�

c
i�j� � HJ� . �22�

From �22� we obtain a well known relation between energy and momentum of the electro-
magnetic field,

��	E� 2 + HJ2

8�

 −

i

4�c

�

�t
�E� � HJ� + �E� −

i

c
�j� � HJ� =

1

4�
�E� ��� · E� � + �E� · �� �E� + HJ��� · HJ� + �HJ · �� �HJ� .

Finally, the pseudovector part of �20� is

−
1

c
�HJ �

�HJ

�t
� −

1

c
�E� �

�E�

�t
� + iHJ��� · E� � − iE� ��� · HJ� + i�HJ � ��� � E� �� − i�E� � ��� � HJ��

= 4�i�HJ −
4�

c
�j� � E� � .

After simple manipulations we obtain the following relation:

�HJ � ��� � E� �� − �E� � ��� � HJ�� + HJ��� · E� � − E� ��� · HJ� +
i

c
�E� �

�E�

�t
� +

i

c
�HJ �

�HJ

�t
�

= 4��HJ +
4�

c
i�j� � E� � .
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Thus in octonic algebra the simple procedure of multiplication of Eq. �17� on the electromag-
netic field octon allows one to obtain simultaneously all the well known relations for the energy
and momentum of the electromagnetic field.

On the other hand if we multiply Eq. �17� on the octon �iHJ −E� �, we get

�iHJ − E� �	 i

c

�HJ

�t
− i��� · HJ� − i��� � HJ� −

1

c

�E�

�t
+ ��� · E� � + ��� � E� �
 = �iHJ − E� �	4�� +

4�

c
j�
 .

Performing multiplication we obtain

−
1

c
	HJ ·

�HJ

�t

 −

1

c
�HJ �

�HJ

�t
� −

i

c
	E� ·

�HJ

�t

 −

i

c
�E� �

�HJ

�t
� + HJ��� · HJ� + iE� ��� · HJ�

+ �HJ · ��� � HJ�� + �HJ � ��� � HJ�� + i�E� · ��� � HJ�� + i�E� � ��� � HJ�� −
i

c
	HJ ·

�E�

�t



−
i

c
�HJ �

�E�

�t
� +

1

c
	E� ·

�E�

�t

 +

1

c
�E� �

�E�

�t
� + iHJ��� · E� � − E� ��� · E� � + i�HJ · ��� � E� ��

+ i�HJ � ��� � E� �� − �E� · ��� � E� �� − �E� � ��� � E� ��

= i4��HJ − 4��E� + i
4�

c
�j� · HJ� − i

4�

c
�j� � HJ� −

4�

c
�j� · E� � +

4�

c
�j� � E� � . �23�

The scalar part of Eq. �23� is written as

−
1

c
	HJ ·

�HJ

�t

 +

1

c
	E� ·

�E�

�t

 + i�E� · ��� � HJ�� + i�HJ · ��� � E� �� = −

4�

c
�j� · E� � .

This expression leads to the relation for the Lorentz invariant E� 2−HJ2, which can be represented as

�

�t
	E� 2 − HJ2

8�

 +

c

4�
i��E� · ��� � HJ�� + �HJ · ��� � E� ��� + �j� · E� � = 0.

The pseuodoscalar part of Eq. �23� is written as

−
i

c
	E� ·

�HJ

�t

 −

i

c
	HJ ·

�E�

�t

 + �HJ · ��� � HJ�� − �E� · ��� � E� �� = i

4�

c
�j� · HJ� ,

which leads to

1

c

�

�t
�E� · HJ� + i�HJ · ��� � HJ�� − i�E� · ��� � E� �� +

4�

c
�j� · HJ� = 0. �24�

The expression �24� is the relation for the second Lorentz invariant �E� ·HJ�.
The vector part of octonic equation �23� is written as

−
i

c
�E� �

�HJ

�t
� −

i

c
�HJ �

�E�

�t
� + HJ��� · HJ� − E� ��� · E� � + �HJ � ��� � HJ�� − �E� � ��� � E� ��

= − 4��E� − i
4�

c
�j� � HJ� .

After transformation we obtain the following expression:
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��	E� 2 − HJ2

8�

 −

i

4�c
�E� �

�HJ

�t
� + �HJ �

�E�

�t
�� + �E� +

i

c
�j� � HJ�

=
1

4�
�E� ��� · E� � + �E� · �� �E� − HJ��� · HJ� − �HJ · �� �HJ� .

Finally, the pseudovector part of Eq. �23� is given by

−
1

c
�HJ �

�HJ

�t
� +

1

c
�E� �

�E�

�t
� + iHJ��� · E� � + iE� ��� · HJ� + i�HJ � ��� � E� �� + i�E� � ��� � HJ��

= 4�i�HJ +
4�

c
�j� � E� � .

After conversion we obtain

�� �E� · HJ� = HJ��� · E� � + E� ��� · HJ� + �E� · �� �HJ + �HJ · �� �E� − 4��HJ +
4�

c
i�j� � E� � +

i

c
�HJ �

�HJ

�t
�

−
i

c
�E� �

�E�

�t
� ,

which is the expression for the gradient of the second Lorentz invariant.

V. CONCLUSION

Thus we have represented the eight-component octons �enclosing scalar, pseudovector, pseu-
doscalar, and vector values� generating noncommutative associative algebra. On the basis of
octonic algebra the generalized octonic equation for the electromagnetic field has been proposed.
It was shown that this equation leads both to the wave equations for potentials and fields and to the
system of Maxwell equations.

Octonic calculus methods have been applied to the derivation of the relations for energy,
momentum, and Lorentz invariants of electromagnetic field. It was shown that in octonic algebra
the complicated relations between values characterizing the electromagnetic field are obtained as
a result of simple octonic multiplication.

The proposed octonic algebra is also convenient and natural for the generalization of the
relativistic quantum mechanics equations on the basis of octonic wave functions and octonic
operators that will be discussed in the next paper.
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