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1. Introduction 

 
The application of hypercomplex numbers and multivectors in the field theory has a long 

history. In particular, the simplest generalization of electrodynamics and quantum mechanics was 
developed on the basis of quaternions [1-5]. The structure of quaternions with four components 
(scalar and vector) corresponds to the relativistic four-vector approach that allows one to 
reformulate field equations in terms of quaternionic algebra. However, the essential imperfection of 
the quaternionic algebra is that the quaternions do not include pseudoscalar and pseudovector 
components. The consideration of total space symmetry with respect to spatial inversion leads us to 
the eight-component structures enclosing scalar, pseudoscalar, vector and pseudovector 
components. However, attempts to apply different eight-component values such as biquaternions, 
octonions [6-11] and multivectors generating associative Clifford algebras [12] have not made 
appreciable progress. In particularly, the few attempts to describe relativistic particles by means of 
octonion wave functions are confronted by difficulties connected with octonions nonassociativity 
[10]. On the other hand, a consistent relativistic approach requires taking into consideration full 
time and space symmetries that leads to the sixteen-component space-time algebras.  

There are a few approaches in the development of sixteen-component field theory. One of them 
is the application of hypernumbers sedenions, which are obtained from octonions by Cayley-
Dickson extension procedure [13-16]. But as in the case of octonions the essential imperfection of 
sedenions is their nonassociativity. Another approach is based on application of hypercomplex 
multivectors generating associative space-time Clifford algebras. The basic idea of such 
multivectors is an introduction of additional noncommutative time unit vector, which is orthogonal 
to the space unit vectors [17, 18]. However, the application of such multivectors in quantum 
mechanics is considered in general as one of abstract algebraic scheme enabling the reformulation 
of Dirac equation for the multicomponent wave functions but does not touch the physical entity of 
this equation.  

Recently we have developed an alternative approach based on our scalar-vector conception [19-
22] realized in eight-component octons and sixteen-component sedeons. In particular, in Ref. 22 we 
considered a variant of sixteen-component sedeonic space-time Clifford algebra with 
noncommutative vector basis and commutative space-time units that allowed us to reformulate the 
field equations in terms of scalar-vector field potentials. However, these equations have some 
asymmetry and contain the special non-sedeonic operators of space-time reflection [22]. In this 
paper we present a new version of the sedeonic space-time algebra with non-commutative bases and 
demonstrate some of its application to the symmetric reformulation of the basic field theory 
equations.  
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2. Sedeonic space-time algebra 
 
The sedeonic algebra encloses four groups of values, which are differed with respect to spatial 

and time inversion.  

(1) Absolute scalars (V ) and absolute vectors (V
r

) are not transformed under spatial and time 
inversion.  

(2) Time scalars (Vt ) and time vectors (Vt

r
) are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
(3) Space scalars (Vr ) and space vectors (Vr

r
) are changed under spatial inversion and are not 

transformed under time inversion.  
(4) Space-time scalars (Vtr ) and space-time vectors (Vtr

r
) are changed under spatial and time 

inversion. 

The indexes t and r indicate the transformations (t for time inversion and r for spatial inversion), 
which change the corresponding values. All introduced values can be integrated into one space-time 
object sedeon %V , which is defined by the following expression: 

V V V V V V V V= + + + + + + +t t r r tr tr

r r r r
%V .     (1) 

Let us introduce scalar-vector basis 0a , 1a , 2a , 3a , where value 1≡0a  is absolute scalar unit and the 
values 1a , 2a , 3a  are absolute unit vectors generating the right Cartesian basis. We introduce also 
four space-time scalar units 0e , 1e , 2e , 3e , where value 1≡0e  is a absolute scalar unit; ≡1 te e  is a 
time scalar unit; ≡2 re e  is a space scalar unit; ≡3 tre e  is a space-time scalar unit. Using scalar-
vector basis ka  (k = 0, 1, 2, 3) and space-time scalar units ne  (n = 0, 1, 2, 3) we can introduce 
unified sedeonic components nkV  in accordance with the following relations 

00V V= 0 0e a ,         

( )01 02 03V V V V= + +0 1 2 3e a a a
r

,       

10V V=t 1 0e a ,         

( )11 12 13V V V V= + +t 1 1 2 3e a a a
r

,            (2) 

20V V=r 2 0e a ,         

( )21 22 23V V V V= + +r 2 1 2 3e a a a
r

,      

30V V=rt 3 0e a ,         

( )31 32 33V V V V= + +rt 3 1 2 3e a a a
r

.      

Then sedeon (1) can be written in the following expanded form: 

( ) ( )
( ) ( ).

00 01 02 03 10 11 12 13

20 21 22 23 30 31 32 33

V V V V V V V V

V V V V V V V V

= + + + + + + +

+ + + + + + + +
0 0 1 2 3 1 0 1 2 3

2 0 1 2 3 3 0 1 2 3

e a a a a e a a a a

e a a a a e a a a a

%V
  (3) 

The sedeonic components nkV  are numbers (complex in general). Further we will use symbol 1 
instead units 0a  and 0e  for simplicity. 

The multiplication and commutation rules for sedeonic absolute unit vectors , ,1 2 3a a a  and 
space-time units , ,1 2 3e e e  are presented in tables 1 and 2. 
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Table 1.           Table 2. 
 
 
 
 
 
 
 
 
 
In the tables and further the value i  is the imaginary unit ( 2 1i = − ). Note that sedeonic units 

1e , 2e , 3e  and unit vectors 1a , 2a , 3a  generate the anticommutative algebras, but , ,1 2 3e e e  
commute with , ,1 2 3a a a . Thus the sedeon %V  is the complicated space-time object consisting of 
absolute scalar, space scalar, time scalar, space-time scalar, absolute vector, space vector, time 
vector and space-time vector.  

Introducing designations of scalar-vector values 

0 00 01 02 03V V V V= + + +1 2 3a a aV ,      

1 10 11 12 13V V V V= + + +1 2 3a a aV ,           (4) 

2 20 21 22 23V V V V= + + +1 2 3a a aV ,      

3 30 31 32 33V V V V= + + +1 2 3a a aV ,      

we can write the sedeon (3) in the following compact form  

0 1 2 3+ +1 2 3e e e%V = V + V V V .     (5) 

On the other hand, introducing designations of space-time sedeon-scalars 

( )0 00 10 20 30V V V V= + + +1 2 3e e eV ,      
( )1 01 11 21 31V V V V= + + +1 2 3e e eV ,      
( )2 02 12 22 32V V V V= + + +1 2 3e e eV ,           (6) 
( )3 03 13 23 33V V V V= + + +1 2 3e e eV ,      

we can write the sedeon (3) in the compact form  

0 1 2 3= + + +1 2 3a a a%V V V V V ,     (7) 

or introducing the sedeon-vector  

1 2 3V V V V+ + + + +t r tr 1 2 3a a a
r r r r r

V = = V V V ,     (8) 

it can be represented in following compact form 

0= +
r

%V V V .        (9) 

Further we will indicate sedeon-scalars and sedeon-vectors with the bold capital letters. 
Let us consider the sedeonic multiplication in detail. The sedeonic product of two sedeons 

%A and %B can be represented in the following form  

( )( ) ( )0 0 0 0 0 0 ⎡ ⎤= + + = + + + ⋅ + ×⎣ ⎦
r r r rr r r r

% %AB A A B B A B A B AB A B A B   (10) 

Here we denoted the sedeonic scalar multiplication of two sedeon-vectors (internal product) by 
symbol “ ⋅ ” and round brackets 

 1a  2a  3a  

1a  1 i 3a  i− 2a  

2a  i− 3a  1 i 1a  

3a  i 2a  i− 1a  1 

 1e  2e  3e  

1e  1 i 3e  i 2e-  

2e  i 3e-  1 i 1e  

3e  i 2e  i 1e-  1 
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( ) 1 1 2 2 3 3⋅ = + +
r r
A B A B A B A B ,    (11) 

and sedeonic vector multiplication (external product) by symbol “×” and square brackets, 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1i i i⎡ ⎤× = − − −⎣ ⎦ 1 2 3a a a
r r
A B A B A B + A B A B + A B A B .  (12) 

In (11) and (12) the multiplication of sedeonic components is performed in accordance with (6) and 
table 2. Note that in sedeonic algebra the vector triple product has some difference from Gibbs 
vector algebra. Let us consider three absolute vectors A

r
, B
r

 and C
r

. Then the formula for the vector 
triple product in sedeonic algebra has the following form: 

( ) ( )A B C B A C C A B⎡ ⎤⎡ ⎤× × = − ⋅ + ⋅⎣ ⎦⎣ ⎦
r r r r r rr r r

.   (13) 

Thus the sedeonic product  

0=
r

%% %F = AB F + F       (14) 
has the following components: 

0 0 0 1 1 2 2 3 3+ +F = A B + A B A B A B ,      

( )1 1 i −0 0 1 2 3 3 2F = A B + A B + A B A B ,         (15) 

( )2 2 0 0 2 3 1 1 3i+ −F = A B + A B A B A B ,     

( )3 3 0 0 3 1 2 2 1i+ −F = A B + A B A B A B .     

 
3. Sedeonic space rotation and space-time inversion 
 

The rotation of sedeon %V on the angle θ  around the absolute unit vector nr  is realized by 
uncompleted sedeon  

( ) ( )cos / 2 sin / 2i nθ θ= +
r%U      (16) 

and by sedeon *%U  complex conjugated to %U : 

( ) ( )* cos / 2 sin / 2i nθ θ= −
r%U     (17) 

with 
* * 1=% % % %U U UU = .      (18) 

The transformed sedeon ′%V  is defined as sedeonic product  
*′ =% % % %V U V U ,      (19) 

Thus the transformed sedeon ′%V can be written as  

( ) ( ) ( ) ( ) ( )cos / 2 sin / 2 cos / 2 sin / 20i n i nθ θ θ θ′ = − + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
rr r%V V V  

( )( )cos 1 cos sin0 n n i nθ θ θ ⎡ ⎤= + + − ⋅ − ×⎣ ⎦
r r rr r rV V V V .    (20) 

It is clearly seen that rotation does not transform the sedeon-scalar part, but sedeonic vector 
r

V  is 
rotated on the angle θ  around nr . 

The operations of time inversion ( tR̂ ), space inversion ( rR̂ ) and space-time inversion ( trR̂ ) are 
connected with transformations in 1e , 2e , 3e basis and can be represented as  
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3210 VVVVVV 32122t eeeee −+−==
~~R̂ ,      

3210 VVVVVV 32111r eeeee −−+== ~~R̂ ,          (21) 

3210 VVVVVV 32133tr eeeee +−−==
~~R̂ .      

 
4 Sedeonic Lorentz transformations 
 

The relativistic event four-vector can be represented in the follow sedeonic form: 

+i ct r= 1 2e e r%S .      (22) 

The square of this value is the Lorentz invariant 
2 2 2 2 2c t x y z= − + + +% %S S .     (23) 

The Lorentz transformation of event four-vector can be realized by uncompleted sedeons 

ch shmϑ ϑ= − 3e r%L ,      (24) 

ch shmϑ ϑ= + 3e r%*L ,      (25) 

where th 2 v / cϑ = , v  is velocity of motion along the absolute unit vector mr . Note that 

1∗ ∗= =% % % %L L L L .      (26) 

The transformed event four-vector ′%S  is written as 

( )( ) ( )ch sh + ch shm i ct r mϑ ϑ ϑ ϑ′ = = + − =3 1 2 3e e e er r r% %% %*S L S L  

( )ch2 sh2i ct i m rϑ ϑ− ⋅1 1e e r r        (27) 

( ) [ ]2 2 2ch sh2 sh shr ctm m r m m r mϑ ϑ ϑ ϑ⎡ ⎤− + ⋅ + × ×⎣ ⎦2 2 2 2+e e e er r r r r r r r . 

Separating the values with 1e  and 2e  we get the well known formulas for time and coordinates 
transformation [23]: 

2

2 2

/
1 /

t x v ct
v c

−′ =
−

, 
2 21 v /

x t vx
c

−′ =
−

, y y′ = , z z′ = ,   (28) 

where x  is the coordinate along the mr  vector. 

Let us also consider the Lorentz transformation of full sedeon %V .  

The transformed sedeon ′%V  can be written as sedeonic product 
′ =% % % %*V L V L .       (29) 

( )( )( )
( )

( )
2 2

2 2

ch sh ch sh

ch sh ch sh

ch sh ch sh .

0

0 0 0 0

m m

m

m m m m

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ = + + −

= − + −

+ − + −

tr tr

tr rt tr tr

tr tr tr tr

e e

e e e e

e e e e

rr r%

r

r r r rr r r r

V V V

V V V V

V V V V

   (30) 

Rewriting the expression (30) with scalar (11) and vector (12) products we get  
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( )
( )

( ) ( )( ) ( )

2 2

2 2 2

ch sh ch sh

ch sh 2 sh

ch sh ch sh .

0 0 0 0 m

m m

m m m m

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ = − + −

+ + − ⋅

⎡ ⎤ ⎡ ⎤+ ⋅ − ⋅ + × − ×⎣ ⎦ ⎣ ⎦

tr tr tr tr

tr tr tr tr

tr tr tr tr

e e e e

e e e e

e e e e

r%

r r rr r

r r r rr r r r

V V V V V

V V V

V V V V

  (31) 

Thus, the transformed sedeon have the following components:  

V V′ = ,          
V V′ =tr tr ,          

( )ch 2 sh 2V V m Vϑ ϑ′ = + ⋅r r tr te
rr ,       

( )ch 2 sh 2V V m Vϑ ϑ′= + ⋅t t tr re
rr ,       

( ) 2ch 2 2 sh sh2V V m V m m Vϑ ϑ ϑ⎡ ⎤′ = − ⋅ + ×⎣ ⎦tr rte
r r r rr r r ,        (32) 

( ) 2ch 2 2 sh sh2V V m V m m Vϑ ϑ ϑ⎡ ⎤′ = − ⋅ + ×⎣ ⎦tr tr tr tre
r r r rr r r ,    

( ) 22 sh sh 2V V m V m V mϑ ϑ′ = + ⋅ +r r r tr te
r r rr r r ,      

( ) 22 sh sh 2V V m V m V mϑ ϑ′= + ⋅ +t t t tr re
r r rr r r .      

It is seen that the sedeon components, which commute with rte  are transformed as field intensities 
while the components that anticommute with rte  are transformed as potentials [23]. 

 
5. Generalized sedeonic wave equation for massive field 
 

Let us consider the field potential in the form of space-time sedeon 

( ) ( ) ( )t,r t,r t,r0= +
rr r r%W W W .          (33) 

The potential of free field should satisfy an equation, which is obtained from the Einstein 
relation for energy and momentum  

2 2 2 2 4E c p m c− =        (34) 

by means of changing classical energy E  and momentum pr  on corresponding quantum-
mechanical operators: 

t
iE
∂
∂

= hˆ  and ∇−=
r

hip̂ .      (35) 

The Einstein relation (34) can be written using sedeonic algebra in the following form:  

( )( )2 2 0i E cp mc i E cp mc+ + + + =t r tr t r tre e e e e er r .       (36) 

Then the generalized sedeonic wave equation for free massive field can be written in the symmetric 
form 

1 1 0mc mci i i i
c t c t
∂ ∂⎛ ⎞⎛ ⎞− ∇ − − ∇ − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

t r tr t r tre e e e e e
r r

%
h h

W .  (37) 

Redefining the operators 

1
c t
∂

∂
∂t t= e ,        
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x y z
⎛ ⎞∂ ∂ ∂

∇ = ∇ = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
r r r 1 2 3e e a a a
r r

,   (38) 

mcm =tr tre
h

        

we can rewrite the equation (37) in compact form: 

( )( ) 0i im i im∂ −∇ − ∂ − ∇ − =t r tr t r tr

r r
%W .    (39) 

Let us also consider the generalized sedeonic source  

( ) ( ) ( )t,r t,r t,r0= +
rr r r%J J J .     (40) 

Then nonhomogeneous sedeonic wave equation for massive field can be written in the following 
form: 

( )( )i im i im∂ −∇ − ∂ − ∇ − =t r tr t r tr

r r
% %W J .    (41) 

The sedeonic equation (41) can be represented in the form of system of Maxwell-like first-order 
equations. Let us consider the sequential action of operators in (41). After the action of the first 
operator we obtain 

( ) 0i im i i∂ −∇ − = ∂ + ∂t r rt t t

r r
%W W W        

( )0 0im im⎡ ⎤−∇ − ∇ ⋅ − ∇ × − −⎣ ⎦r r r tr tr

r r r r r r
W W W W W .        (42) 

Introducing the scalar and vector field’s intensities 

( )0 0 0i im= ∂ − ∇ ⋅ −t r tr

r r
W W WΕ ,      (43) 

0i im ⎡ ⎤= ∂ −∇ − − ∇ ×⎣ ⎦t r tr r

r r r r r r
E W W W W ,     (44) 

the relation (42) is presented as 

( ) 0i im∂ −∇ − =t r tr

r r
%W E + E .      (45) 

Then the wave equation (41) can be written as  

( )( )0 0i im∂ −∇ − = +t r tr

r r r
E + E J J .     (46) 

Applying the operator ( )i im∂ −∇ −t r tr

r
 to both parts of equation (46) and separating sedeon-scalar 

and sedeon-vector parts we get the wave equations for the field intensities 

( )( ) ( )0 0 0i im i im i im∂ − ∇ − ∂ − ∇ − = ∂ − ∇ ⋅ −t r tr t r tr t r tr

r r r r
E J J J ,             (47) 

( )( ) 0i im i im i im ⎡ ⎤∂ − ∇ − ∂ − ∇ − = ∂ − ∇ − − ∇ ×⎣ ⎦t r tr t r tr t r tr r

r r r r r r r r
E J J J J . (48) 

On the other hand, performing sedeonic multiplication in expression (46) and separating sedeon-
scalar and sedeon-vector parts we obtain the system of the first-order equations for the field's 
intensities: 

( )0 0 0i im∂ − ∇ ⋅ − =t r tr

r r
E E E J ,               (49) 

0i im⎡ ⎤∂ − ∇ × − ∇ − =⎣ ⎦t r r tr

r r r r r r
E E E E J .     (50) 
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In special case with the mass equal to zero the equations (49) and (50) coincide with the 
Maxwell equations for electromagnetic field in a vacuum [22]. Indeed, choosing sedeonic potential 
as 

i Aϕ +t re e
r

%W = ,      (51) 

and the source of electromagnetic field as 
44= i j
c
ππρ− −t re e
r

%J ,      (52) 

we get the following wave equation: 

( )1 1 44i i i A i j
c t c t c

πϕ πρ∂ ∂⎛ ⎞⎛ ⎞− ∇ − ∇ + = − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
t r t r t r t re e e e e e e e

rr r r
.   (53) 

After the action of the first operator we obtain 

( ) ( )1 1 1 Ai i A A A
c t c t c t

ϕϕ ϕ∂ ∂ ∂⎛ ⎞ ⎡ ⎤− ∇ + = − − − ∇ − ∇⋅ − ∇×⎜ ⎟ ⎣ ⎦∂ ∂ ∂⎝ ⎠
t r t r tr tre e e e e e

r
r r rr r r r

. (54) 

Using the sedeonic definitions of the electric and magnetic fields 

[ ]AiH
t
A

c
E

rrr

r
r

r

×∇−=

∇−
∂
∂

−= ,1 ϕ
      (55) 

and taking into account Lorentz gauge condition 

( ) 01
=⋅∇+

∂
∂ A

tc

rrϕ ,       (56) 

the expression (54) can be rewritten as 

( )1i i A E iH
c t

ϕ∂⎛ ⎞− ∇ + = −⎜ ⎟∂⎝ ⎠
t r t r tre e e e e

rr r r
.      (57) 

Then the wave equation (53) can be represented in the following form: 

( )1 44i E iH i j
c t c

ππρ∂⎛ ⎞− ∇ − = − −⎜ ⎟∂⎝ ⎠
t r tr t re e e e e

r r r r
.    (58) 

Performing sedeonic multiplication in the left part of equation (58) we get 

( )

( )

1

1 44 .

E i E i E
c t

H i H i H i j
c t c

ππρ

∂ ⎡ ⎤− ∇ ⋅ − ∇ ×⎣ ⎦∂
∂ ⎡ ⎤+ + ∇ ⋅ + ∇ × = − −⎣ ⎦∂

r t t

t r r t r

e e e

e e e e e

r
r r r r

r
r r r r r

  (59) 

Separating space-time values we obtain the system of Maxwell equations in the following form: 
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( ) ( )

( )

( )

( ) ( )

4 time scalar part ,

1 4 space vector part ,

time vector part ,

0 space scalar part .

E

EH i i j
c t c

HE i
t

H

πρ

π

∇ ⋅ =

∂⎡ ⎤∇× = +⎣ ⎦ ∂
∂⎡ ⎤∇× = −⎣ ⎦ ∂

∇ ⋅ =

t t

r r r

t t

r

e e

e e e

e e

e

r r

r
r r r

r
r r

r r

   (60) 

The system (60) coincides with Maxwell equations. 

 

Generalization of Dirac equation 
 

In sedeonic algebra the Dirac equation is written as  

( ) 0i im∂ −∇ − =t r tr

r
%W .      (61) 

In fact, this equation describes the special field [21] with zero field intensities 0E  and 
r
E  (see 

expression (45)). In equation (61) the basis elements 1e , 2e , 3e  and 1a , 2a , 3a  play the role of the 
space-time operators, which transform the wave function %W  by means of component permutation. 
The matrix forms of field potential %W  and 1e , 2e , 3e , 1a , 2a , 3a  operators are presented in 
Appendix A.  

In special case with the mass equal to zero еhe equation (61) can be rewritten as 

( ) 0i∂ − ∇ =t r

r
%W .      (62)  

In fact this equation describes the free massless field of electromagnetic nature (the neutrino field 
[22]) with field intensities equal to zero (see the expression 57). 

 
Conclusion 
 

Thus in this paper we presented the new version of sixteen-component values “sedeons”, 
generating associative noncommutative algebra. We proposed the generalized sedeonic second-
order wave equation for a massive field and showed that this equation can be represented as the 
system of first-order Maxwell’s-like equations for the field intensities. The generalized Dirac 
equation formulated in the sedeonic form was also considered. 

We believe that sedeonic algebra is a powerful tool for the analysis of space-time symmetry in 
relativistic field theory. 
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Appendix A: Matrix representation of sedeons 
 

Let us consider a matrix representation of the sedeon. We start with sedeon %V  in the 
0e , 1e , 2e , 3e  basis  

0 1 2 3+ +0 1 2 3e e e e%V = V + V V V . 
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The sedeonic product of 1e  and %V  can be written as 

1 0 3 2i i−1 0 1 2 3e e + e e e%V = V V V + V ,    (A1) 

therefore the sedeonic unit 1e  enables the following matrix representation: 

0 1 0 0
1 0 0 0
0 0 0
0 0 0

i
i

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

1e .       (A2) 

Analogously: 

1 0 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

0e , 

0 0 1 0
0 0 0
1 0 0 0
0 0 0

i

i

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟

−⎝ ⎠

2e , 

0 0 0 1
0 0 0
0 0 0
1 0 0 0

i
i

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

3e .      (A3) 

Using (A2) and (A3) we can write a sedeon %V  (in 0e , 1e , 2e , 3e  basis) in the following matrix form: 

0 1 2 3

1 0 3 2

2 3 0 1

2 1 0

i i
i i
i i

⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠3

%

V V V V
V V V V

V
V V V V
V V V V

.     (A4) 

On the other hand we can write sedeon %V  in 0a , 1a , 2a , 3a  basis 

0 1 2 3= + + +0 1 2 3a a a a%V V V V V .      

Analogously the basis elements 0a , 1a , 2a , 3a  have the following representation: 

1 0 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

0a , 

0 1 0 0
1 0 0 0
0 0 0
0 0 0

i
i

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

1a , 

0 0 1 0
0 0 0
1 0 0 0
0 0 0

i

i

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟

−⎝ ⎠

2a , 

0 0 0 1
0 0 0
0 0 0
1 0 0 0

i
i

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

3a .      (A5) 

Using (A5) a sedeon %V  can be written in 0a , 1a , 2a , 3a  basis as a 4 × 4 matrix 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

i i
i i
i i

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

%

V V V V
V V V V

V
V V V V
V V V V

.     (A6) 

Thus the sixteen-component sedeon can be represented as a 16 × 16 matrix, which can be 
represented in two different compact 4 × 4 form. First representation in 0e , 1e , 2e , 3e  basis is (A4) 
with nV  components in 0a , 1a , 2a , 3a  basis 
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n0 n1 n2 n3

n1 n0 n3 n2
n

n2 n3 n0 n1

n3 n2 n1 n0

V V V V
V V iV iV
V iV V iV
V iV iV V

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

V .     (A7) 

Second representation in 0a , 1a , 2a , 3a  basis is (A6) with kV  components in 0e , 1e , 2e , 3e  basis 

0k 1k 2k 3k

1k 0k 3k 2k
k

2k 3k 0k 1k

3k 2k 1k 0k

V V V V
V V iV iV
V iV V iV
V iV iV V

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

V .     (A8) 

Let us consider the relations between unit vectors 1a , 2a , 3a  and Dirac matrices. Introducing 
new values  

( )1
21 0 3= +W V V , ( )1

22 1 2i= +W V V , ( )1
23 1 2i= −W V V , ( )1

24 0 3= −W V V ,  (A9) 

we can write the sedeon in the basis of eigenfunctions of operator 3a  in the following form: 

(1 ) ( ) ( ) (1 )1 2 3 4i i= + + − + + + −3 1 2 1 2 3a a a a a a%V W W W W ,   (A10) 

where (1 )+ 3a , ( )i−1 2a a , ( )i+1 2a a  and (1 )− 3a  is a new sedeonic basis. Then the action of vector 
operators can be represented as 

(1 ) ( ) ( ) (1 )2 1 4 3i i= + + − + + + −1 3 1 2 1 2 3a a a a a a a%V W W W W ,     

(1 ) ( ) ( ) (1 )2 1 4 3i i i i i i= − + + − − + + −2 3 1 2 1 2 3a a a a a a a%V W W W W ,    

(1 ) ( ) ( ) (1 )1 2 3 4i i= + − − + + − −3 3 1 2 1 2 3a a a a a a a%V W W W W .     

Therefore the unit vectors 1a , 2a , 3a  can be written in the new basis as the following matrices: 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

1a , 

0 0 0
0 0 0

0 0 0
0 0 0

i
i

i
i

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

2a , 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟

−⎝ ⎠

3a ,   (A11) 

which coincide with spin operators in Dirac theory [24]: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0100
1000
0001
0010

ˆ1σ , 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

000
000

000
000

ˆ2

i
i

i
i

σ , 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

1000
0100
0010
0001

ˆ3σ .    
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