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In present paper we develop the description of massless fields on the basis of space-time algebra of sixteen-
component sedeons. The generalized sedeonic second-order equation for unified gravitoelectromagnetic 
(GE) field describing simultaneously gravity and electromagnetism is proposed. The second-order relations 
for the GE field energy, momentum and Lorentz invariants are derived. We consider also the generalized 
sedeonic first-order equation for the massless neutrino field. The second-order relations for the neutrino 
potentials analogues to the Pointing theorem and Lorentz invariant relations in gravitoelectromagnetism are 
also derived.  

 
 

1. Introduction 
 

The linearized weak field equations of general relativity [1, 2] can be represented as the set of 
Maxwell-like equations for the vectorial gravitoelectric and gravitomagnetic fields [3-5]. This linear 
approach (so-called “post-Newtonian approximation” or “gravitoelectromagnetism”) is widely used 
in astrophysics for the analysis of interactions between moving and spinning masses (see for 
example Refs. 6-9). However, the vector algebra, which is usually used for the formulation of 
electromagnetism and gravitoelectromagnetism, does not adequately specify the space-time 
properties of gravitational and electromagnetic fields. Since the Maxwell-like equations for 
electromagnetic field (and corresponding linear equations for gravitational field) are the system of 
four equations for scalar, pseudoscalar, vector and pseudovector values the application of the eight-
component algebras is more appropriate. There are different approaches based on algebra of 
hypercomplex numbers and Clifford algebras to formulate electromagnetism [10-17] and linear 
gravity [18, 19] taking into account above mentioned space symmetry. However, the consideration 
of total space-time field’s symmetry requires the introduction of sixteen-component space-time 
values. It is known some attempts to develop a field theory on the basis of sixteen-component 
structures such as hypercomplex numbers sedenions [20-24] and hypercomplex multivectors 
generating associative space-time Clifford algebras [25,26]. However, these attempts have not made 
appreciable progress. 

Recently we proposed the sixteen-component sedeonic space-time algebra [27,28] to modify 
the field theory equations. In present paper we develop the consideration of massless fields in terms 
of sedeonic potentials. We show that linear model of gravitoelectromagnetism enables the 
introduction of unified sedeonic gravitoelectromagnetic (GE) field describing simultaneously 
gravity and electromagnetism. 

This paper has the following structure. In Sec. 2 we briefly review the basic properties of 
sedeonic algebra. In Sec. 3 the symmetric form of Newton-Coulomb low of 
gravitoelectromagnetism is discussed. Sec. 4 is devoted to the formulation of symmetric equations 
for unified gravitoelectromagnetic fields. In Sec. 5 and 6 the second-order relations for energy, 
momentum and Lorentz invariants of GE field are derived. In Sec. 7 we analyze the generalized 
sedeonic equation for the massless neutrino field. Finally, in Sec. 8 the second-order relations for 
neutrino potentials are discussed.  
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2. Sedeonic space-time algebra 
 

To begin with we will briefly review the basic properties of sedeons. The sixteen-component 
sedeons take into account total space-time symmetry of physical fields. The sedeonic algebra 
encloses four groups of values, which are differed with respect to spatial and time inversion.  

(1) Absolute scalars (V ) and absolute vectors (V


) are not transformed under spatial and time 
inversion.  

(2) Time scalars (Vt ) and time vectors (Vt


) are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
(3) Space scalars (Vr ) and space vectors (Vr


) are changed under spatial inversion and are not 

transformed under time inversion.  
(4) Space-time scalars (Vtr ) and space-time vectors (Vtr


) are changed under spatial and time 

inversion. 
The indexes t and r indicate the transformations (t for time inversion and r for spatial inversion), 
which change the corresponding values. All introduced values can be integrated into one space-time 
object sedeon V , which is defined by the following expression: 

V V V V V V V V       t t r r tr tr

   
V .    (2.1) 

Let us introduce scalar-vector basis 0a , 1a , 2a , 3a , where value 10a  is absolute scalar unit and the 
values 1a , 2a , 3a  are absolute unit vectors generating the right Cartesian basis. We introduce also 
four space-time scalar units 0e , 1e , 2e , 3e , where value 10e  is a absolute scalar unit; 1 te e  is a 
time scalar unit; 2 re e  is a space scalar unit; 3 tre e  is a space-time scalar unit. Using scalar-
vector basis ka  (k = 0, 1, 2, 3) and space-time scalar units ne  (n = 0, 1, 2, 3) we can introduce 
unified sedeonic components nkV  in accordance with the following relations 

00V V 0 0e a ,         

 01 02 03V V V V  0 1 2 3e a a a


,       

10V Vt 1 0e a ,         

 11 12 13V V V V  t 1 1 2 3e a a a


,         (2.2) 

20V Vr 2 0e a ,         

 21 22 23V V V V  r 2 1 2 3e a a a


,      

30V Vrt 3 0e a ,         

 31 32 33V V V V  rt 3 1 2 3e a a a


.      

Then sedeon (2.1) can be written in the following expanded form: 

   
   .

00 01 02 03 10 11 12 13

20 21 22 23 30 31 32 33

V V V V V V V V

V V V V V V V V

       

       
0 0 1 2 3 1 0 1 2 3

2 0 1 2 3 3 0 1 2 3

e a a a a e a a a a

e a a a a e a a a a

V
 (2.3) 

The sedeonic components nkV  are numbers (complex in general). Further we will use symbol 1 
instead units 0a  and 0e  for simplicity. 

The multiplication and commutation rules for sedeonic absolute unit vectors , ,1 2 3a a a  and 
space-time units , ,1 2 3e e e  are presented in tables 1 and 2. 
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Table 1.           Table 2. 
 
 
 
 
 
 
 
 
 
In the tables and further the value i  is the imaginary unit ( 2 1i   ). Note that sedeonic units 

1e , 2e , 3e  and unit vectors 1a , 2a , 3a  generate the anticommutative algebras, but , ,1 2 3e e e  
commute with , ,1 2 3a a a . Thus the sedeon V  is the complicated space-time object consisting of 
absolute scalar, space scalar, time scalar, space-time scalar, absolute vector, space vector, time 
vector and space-time vector.  

Introducing designations of space-time sedeon-scalars 

( )0 00 10 20 30V V V V   1 2 3e e eV ,      
( )1 01 11 21 31V V V V   1 2 3e e eV ,      
( )2 02 12 22 32V V V V   1 2 3e e eV ,        (2.4) 
( )3 03 13 23 33V V V V   1 2 3e e eV ,      

we can write the sedeon (2.3) in the compact form  

0 1 2 3   1 2 3a a aV V V V V ,     (2.5) 

or introducing the sedeon-vector  

1 2 3V V V V    t r tr 1 2 3a a a
    

V = = V V V ,     (2.6) 

it can be represented in following compact form 

0 


V V V .        (2.7) 

Further we will indicate sedeon-scalars and sedeon-vectors with the bold capital letters. 
Let us consider the sedeonic multiplication in detail. The sedeonic product of two sedeons 

A and B can be represented in the following form  

    0 0 0 0 0 0            
      

 AB A A B B A B A B AB A B A B .  (2.8) 

Here we denoted the sedeonic scalar multiplication of two sedeon-vectors (internal product) by 
symbol “  ” and round brackets 

  1 1 2 2 3 3   
 
A B A B A B A B ,    (2.9) 

and sedeonic vector multiplication (external product) by symbol “” and square brackets, 

     2 3 3 2 3 1 1 3 1 2 2 1i i i       1 2 3a a a
 
A B A B A B + A B A B + A B A B .  (2.10) 

In (2.9) and (2.10) the multiplication of sedeonic components is performed in accordance with (2.6) 
and table 2. Note that in sedeonic algebra the vector triple product has some difference from Gibbs 
vector algebra. Let us consider three absolute vectors A


, B


 and C


. Then the formula for the vector 
triple product in sedeonic algebra has the following form: 

 1a  2a  3a  

1a  1 i 3a  i 2a  

2a  i 3a  1 i 1a  

3a  i 2a  i 1a  1 
 

 1e  2e  3e  

1e  1 i 3e  i 2e  

2e  i 3e  1 i 1e  

3e  i 2e  i 1e  1 
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   A B C B A C C A B          
       

.   (2.11) 

In the next sections we apply the sedeonic algebra to the unified description of gravitational 
and electromagnetic fields. 
 
 
3. Newton - Coulomb low 
 

It is known that Coulomb's law for the force of electrical interaction between two charged point 
bodies is written as follows: 

1 2
12 123

12

e e
e

q qF r
r


  ,     (3.1) 

where 1eq  and 2eq  are electrical charges, 12r  is a vector directed from body 1 to body 2, 12r is the 
separation between point bodies, which is equal to modulus of 12r . For a symmetric description of 
electromagnetic and gravitational phenomena, we introduce the gravitational charge gq , considered 
previously in Refs 7 and 29:  

gq Gm ,      (3.2) 

where G is the gravitational constant, m  is a mass of gravitating body. Then Newton's law for 
gravitational force between two point bodies can be written in the form of Coulomb's law:  

1 2
12 123

12

g g
g

q q
F r

r
 

  .     (3.3) 

Simultaneous consideration of gravitational and electromagnetic fields leads us to another 
symmetry connected with charge conjugation. The idea consists in an introduction of additional 
noncommutative and nonassociative units associated with electrical and gravitational charges. Let 
us introduce two new units. First one is electrical unit e1ε ε , which is changed (in sign) under 
electrical charge conjugation. Second one is gravitational unit g2ε ε , which is changed (in sign) 
under gravitational charge conjugation. We emphasize that these units are noncommutative and 
nonassociative. For example: 

,
.

 
 

1 2 2 1

1 2 1 2

ε ε ε ε
ε ε ε ε

      (3.4) 

We assume that in the classical gravitoelectrodynamics there is no direct interaction between 
gravitational and electrical charges. Then the rules of multiplication for units 1ε  and 1ε  should be 
chosen as follows: 
 

Table 3. Multiplication rules for 1ε  and 1ε  units. 
 
 
 
 
 
 
 
 
 

 1ε  2ε  

1ε  1 0 

2ε  0 1 
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Following this approach, the generalized gravitoelectromagnetic charge Q can be presented as 

e gQ q i q 1 2ε ε .         (3.5) 

Then the operations of electrical charge conjugation ( êI ), gravitational charge conjugation ( ˆ
gI ), and 

electrogravitational charge conjugation ( êgI ) can be presented as 

ê e gI Q Q q i q  2 2 1 2= ε ε ε ε ,     (3.6) 

ˆ
g e gI Q Q q i q 1 1 1 2= ε ε ε ε ,     (3.7) 

êg e gI Q Q q i q  2 1 1 2 1 2= ε ε ε ε ε ε .    (3.8) 

The generalized Newton - Coulomb law can be written as: 

1 2
12 123

12

Q QF r
r


  .         (3.9) 

Indeed, relation (3.9) gives us correct expression for the generalized force between two massive 
electrically charged point bodies  

1 21 2
12 12 123 3

12 12

g ge e q qq qF r r
r r

 
   .     (3.10) 

Analogously one can introduce the generalized GE field E


 as 

e gE E i E 1 2ε ε
  

,       (3.11) 

where eE


 is electrical field intensity, gE


 is gravitational field intensity. Then the generalized 
Newton - Coulomb law can be written in the following form: 

12 1 2F E Q
 

.             (3.12) 

Indeed, this relation leads us to the correct expression for the generalized GE force 

12 1 2 1 2e e g gF E q E q 
  

.      (3.13) 

 
 
4. Generalized sedeonic equations for gravitoelectromagnetic field  
 

The sedeonic formalism enables the representation of gravitational and electromagnetic fields 
as one uniformed gravitoelectromagnetic field. Indeed, the generalized sedeonic second-order 
equation for massless fields can be presented in the following form [27]: 

 1 1 .i i
c t c t
            

t r t re e e e
 

 W J  (4.1) 

Let us consider the potential of GE field as: 

   ,е е g gi A i i A    t r t re e e e
 

W  (4.2) 

where , ,е е gA 


 and ,gA


 are real scalar and vector potentials of electromagnetic (index e) and 
gravitational (index g) fields. Hereafter we mean that electrical values contain 1ε  and gravitational 
values contain 2ε  units, but we omit them to simplify the farther expressions.  
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Let us also consider the generalized sedeonic source of GE field 

1 14 4 ,e e g gi j i i j
c c

             
   

t r t re e e e
 

J    (4.3) 

where e  is a volume density of electrical charge; ej


 is a volume density of electrical current; g  

is a volume density of gravity charge; gj


 is a volume density of gravitational current [7]. Here we  
do not consider the magnetic and gravitomagnetic monopoles and corresponding magnetic currents. 
Then the sedeonic GE field equation (3.1) can be represented in the following form: 

 
  1 1

1 14 4 .

е е g g

e e g g

i i i A i i A
c t c t

i j i i j
c c

 

   

               
          
   

t r t r t r t r

t r t r

e e e e e e e e

e e e e

  

 
 (4.4) 

This equation describes simultaneously electromagnetic and gravitational fields. Performing 
sedeonic multiplication of operators in the left part and separating real and imaginary parts (or 
terms with 1ε  and 2ε  units) in time and space scalars and vectors we get the system of wave 
equations for the components of GE potential 

2

2

1 4е ec t
 

 
    

,      (4.5) 

2

2

1 14е eA j
c ct


 

    

 
,     (4.6) 

2

2

1 4g gc t
 

 
     

,     (4.7) 

2

2

1 14g gA j
c ct


 

     

 
.     (4.8) 

On the other hand, equation (4.4) can be represented as the system of first-order Maxwell 
equation for electromagnetic and gravitational fields. Let us consider the sequential action of 
operators in Eq. (4.4). After the action of first operator we obtain 

 

  

 

 

1

1 1

1 1

е е g g

e e
e e e

g g
g g g

i i A i i A
с t

A A A
c t c t

A
i A A .

c t c t

 







        

              
                  

t r t r t r

rt rt

rt rt

e e e e e e

e e

e e

 


   


   

 (4.9) 

This expression enables the introduction of scalar and vector intensities of GE field in the following 
form:  
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1

1

1

1

e
e e

e
e e

e e

g
g g

g
g g

g g

f A ,
c t

A
E ,

c t
H i A ,

f A ,
c t

A
E ,

c t
H i A .










    




  


    


    



  


    




 

 




 

 

     (4.10) 

Using the definitions (4.10), expression (4.9) can be rewritten as 

  
 

1
е е g g

e e e g g g

i i A i i A
с t

f E iH i f E iH .

        

     

t r t r t r

rt rt

e e e e e e

e e

 

                                           
(4.11) 

Then the generalized equation (4.4) can be represented in the following form: 

  1

1 14 4

e e e g g g

e e g g

i f E iH i f E iH
с t

i j i i j .
c c

   

         
          
   

t r rt rt

t r t r

e e e e

e e e e

    

     
(4.12) 

Applying operator 1i
с t
    

t re e


 to both parts of expression (4.12) one can obtain the second-

order wave equations for the field intensities in the following form: 

 
2

2 2

1 4 e
e ef j

c tc t
                

 
,    (4.13) 

2

2 2 2

1 44 e
e e

j
E

tc t c


 
  

        


 

,    (4.14) 

2

2 2

1 4
e eH i j

cc t
           

  
 ,    (4.15) 

 
2

2 2

1 4 g
g gf j

c tc t
   

           

 
,    (4.16) 

2

2 2 2

1 44 g
g g

j
E

tc t c


 
 

       


 

,    (4.17) 

2

2 2

1 4
g gH i j

cc t
           

  
.     (4.18) 

In the absence of processes of matter nucleation and annihilation, we can assume the following 
conservation laws 
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  0e
ejt


   



 
,      (4.19) 

  0g
gjt


   



 
,      (4.20) 

and can take the scalar fields ef  and gf  equal to zero. This is equivalent to the Lorentz gauge 
conditions (see expressions 4.10): 

1 + ( ) = 0 ,e
e ef A

c t


  



     (4.21) 

1 + ( ) = 0 .g
g gf A

c t


  



     (4.22) 

In this case, the expression (4.11) is rewritten as  

     1
е е g g e e g gi i A i i A E iH i E iH ,

с t
 

           
t r t r t r rt rte e e e e e e e

     
 (4.21) 

and equation (4.12) can be represented as 

  1

1 14 4

e e g g

e e g g

i E iH i E iH
с t

i j i i j .
c c

   

       
          
   

t r rt rt

t r t r

e e e e

e e e e

    

      
(4.22) 

Performing sedeonic multiplication in the left part of equation (4.22) we get: 

   

   

1 1

1 1

1 14 4

e e
e e e e

g g
g g g g

e e g g

H Ei E i H i E i H
c t c t

H E
i i E i H i E i H

c t c t

i j i i j
c c

   

                      
  

                      
         
  

t r t t r r

t r t t r r

t r t r

e e e e e e

e e e e e e

e e e e

 
       

 
       

 
..



 (4.23) 

Separating terms with different space-time properties, we get a system of Maxwell's equations for 
the GE field 

   

     
    
  

1 ,

4 1 ,

4 ,

0.

e g e g

e g e g e g

e g e g

e g

i E iE H iH
c t

i H iH j ij E iE
c c t

E iE i

H iH



  

        
         

    

   

    

     

  

  

  (4.24) 

Separating real and imaginary parts (or terms with 1ε  and 2ε  units), we obtain two systems of 
Maxwell equations for electromagnetic and gravitational fields. For the electromagnetic field we get 
following system: 
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1 ,

4 1 ,

4 ,

0.

e
e

e
e e

e e

e

Hi E
c t

E
i H j

c c t
E

H





      
      

  

  


 


  

 

 

    (4.25) 

On the other hand, for the gravitational field we obtain  

 
 

1 ,

4 1 ,

4 ,

0.

g
g

g
g g

g g

g

H
i E

c t
E

i H j
c c t

E

H






      


       

   

  


 


  

 

 

    (4.26) 

Thus, we have shown that the generalized equation (4.4) correctly describes the unified GE field. 
 
5. Sedeonic relations for energy and momentum of GE field 
 

The sedeonic algebra allows one to provide the combined calculus with electromagnetic and 
gravitational fields simultaneously. Multiplying the expression (4.22) on the sedeon 

 e e g gE iH i E iH  rt rte e
   

 from the left we obtain 

     

  

1

1 14

e e g g e e g g

e e g g e e g g

E iH i E iH i E iH i E iH
с t

E iH i E iH i j i i j .
c c

  

          
           

  

rt rt t r rt rt

rt rt t r t r

e e e e e e

e e e e e e

        

     
            (5.1) 

Then performing sedeonic multiplication, we get the following expression: 

         

       

         

2 21
2

1 1

e g e g e g e g

e g e g
e g e g

e g e g e g e g

i E iE H iH i E iE H iH
c t

H iH E iE
i E iE i H iH

c t c t

E iE E iE H iH H iH

             
                

        

               

t

r

e

e

        

   
   

         

   

       

         
        

1 1e g e g
e g e g

e g e g e g e g

e g e g e g e g

E iE H iH
i E iE i H iH
c t c t

E iE H iH H iH E iE

E iE H iH H iH E iE

                 
        

       

                     

te

   
   

         

         

      (5.2) 
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2 21 1
2

4 4

14

4

e g e g e g e g

e g e g e g e g

e g e g r e g e g

e g e g e g e g

i E iE H iH E iE H iH
c t

E iE E iE H iH H iH

i E iE j ij i H iH j ij
c c

i H iH i E iE j ij
c

 

  



            

       

       

           



r

t

t

r

e

e e

e

e

        

         

      

     

       1 .e g e g e g e gi E iE i H iH j ij
c

           

     

    

Note that in this expression and further the operator 


 acts on all right expression. For example, for 
any vectors A


 and B


 we have 

     A B B A A B    
       

.      (5.3) 

Equating the components with different space-time properties we get the following equations for 
the GE field intensities: 

         
    

2 21
8 4

0,

e g e g e g e g

e g e g

cE iE H iH i E iE H iH
t

E iE j ij
 

           

    

        

   
           (5.4) 

       

          
    

1
4

4
0,

e g e g
e g e g

e g e g e g e g

e g e g

H iH E iE
E iE H iH

t t

ci E iE E iE H iH H iH

H iH j ij





                         

               

    

   
   

         

   

               (5.5) 

       

          
        

  

1
4

4

4

e g e g
e g e g

e g e g e g e g

e g e g e g e g

e g e g e

E iE H iH
i E iE H iH

t t

c E iE H iH H iH E iE

c E iE H iH H iH E iE

c H iH i i E i







 

                          

        

                     

    

   
   

         

         

       0,g e gE j ij    
 

    
          (5.6) 

        
        

      

2 21
4 8

4
0.

e g e g e g e g

e g e g e g e g

e g e g e g e g

ci E iE H iH E iE H iH
t

c E iE E iE H iH H iH

c i E iE i H iH j ij

 



 

           

        

         

        

         

     

                  (5.8) 

Finally, taking into account that 01 2ε ε  and separating the real and imaginary parts we get 
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2 2 2 21
8 4

0,

e e g g e e g g

e e g g

cE H E H i E H E H
t

E j E j
 

                 

    

         

  
                   (5.9) 

   
        

   

2 2 2 21 1
8 4

1
4

0,

e e g g e e g g

e e e e g g g g

e e g g e e g g

E H E H i E H E H
c t

E E H H E E H H

E E i H j H j

 



 

              

           

            

        

           

    

    (5.10) 

        
    

1
4

4
0,

g ge e
e e g g

e e e e g g g g

e e g g

H EH EE H E H
t t t t

ci E E H H E E H H

H j H j





                                      

                         

    

  
   

           

  

           (5.11) 

        

1
4

4

4

g ge e
e g e g

e e g g e e g g

e e e e g g g g

E HE Hi E E H H
t t t t

c E H E H H E H E

c E H H E E H H E







                                      

       

                               

  
   

           

            
    0.e e g g e e g gc H H i E j E j 

    

            
    

        (5.12) 

The expression (5.9) is the generalized Pointing theorem for the GE field. The value w  

 2 2 2 21
8 e e g gw E H E H


   
   

     (5.13) 

plays the role of volume density of GE field energy, while vector S


 

 e e g gS i E H E H          
    

     (5.14) 

plays the role of Pointing vector of GE field. 
 
 
6. Lorentz invariants of GE field 
 

The sedeonic algebra allows one to obtain relations for the Lorentz invariants of GE field.  
Let us multiply expression (4.22) on the complex conjugated sedeon of GE field intensities from the 
left: 

     

  

1

1 14

rt e e rt g g t r rt e e rt g g

rt e e rt g g t e r e t g r g

E iH i E iH i E iH i E iH
c t

E iH i E iH i j i i j .
c c

  

          
           

  

e e e e e e

e e e e e e

        

     
  (6.1) 
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Then performing sedeonic multiplication, we obtain the following expression: 

       

          
       

 

1 1

1

e g e g
t e g e g

e g e g e g e g

e g e g
r e g e g

e g

E iE H iH
i E iE H iH

c t c t

i E iE H iH H iH E iE

H iH E iE
i E iE H iH

c t t

i E iE

                         

               

                     

  

e

e

   
   

         

   
   

         
       

         
     

1 1

e g e g e g

e g e g
t e g e g

e g e g e g e g

e g e g e g e

E iE i H iH H iH

E iE H iH
i E iE i H iH

c t c t

E iE H iH H iH E iE

E iE H iH H iH E i

            

                          

       

             

e

       

   
   

         

          
       

         
        

 

1 1

4

g

e g e g
r e g e g

e g e g e g e g

e g e g e g e g

t e g e

E

H iH E iE
i E iE i H iH

c t c t

E iE E iE H iH H iH

E iE E iE H iH H iH

i E iE j
c
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(6.2)

 

Equating the components with different space-time properties, we get the following equations for 
GE field intensities: 
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 (6.6) 

Finally, taking into account that 01 2ε ε  and separating the real and imaginary parts we get 
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   (6.10) 

The expressions (6.7)-(6.10) are the equations for the generalized Lorentz invariants 1I  and 2I  of 
GE field: 

2 2 2 2
1 e e g gI E H E H   

   
,     (6.11) 

   2 e e g gI E H E H   
   

.     (6.12) 

 
 
7. Sedeonic equations for neutrino field 
 

The free massless neutrino field is described by the first-order sedeonic equation [27,28]: 

1 0i
c t 
     

t re e


W .     (7.1) 

Drawing on an analogy with the gravitoelectromagnetic field (see Eq. 4.2) we can write the 
potential 

W  in the following form: 

,i A   t re e


W      (7.2) 

where   and A


 are complex scalar and vector potentials of neutrino field: 

,i            (7.3) 

.A A iA   
  

      (7.4) 

Thus the equation for free neutrino field can be represented as 

 1 0i i A
c t  
      

t r t re e e e


.    (7.5) 

Applying the operator   

1i
c t

 

t re e
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to the equation (7.5) we get 

 
2

t r2 2

1 0i A
c t  

 
     

e e


.    (7.6) 

Separating the real and imaginary terms with different space-time properties, we get the following 
wave equations for the potentials: 

2

2 2

1 0,
c t 

 
    

       (7.7) 

2

2 2

1 0,
c t 

 
    

       (7.8) 

2

2 2

1 0.A
c t 

 
    


       (7.9) 

2

2 2

1 0.A
c t 

 
    


     (7.10) 

In fact, the potentials of neutrino field  ,  , A


, A


 satisfy the second order wave equations 

analogues to the equations for GE field. However, first order equation (7.5) describes the 
massless field with field intensities equal to zero (see the expression 4.11 for comparison) 
[27,30].  

On the other hand performing sedeonic multiplication in equation (7.5) we get  

 1 1 0.A A A
c t c t

 
  




              tr tre e


   
  (7.12) 

Separating the terms with different space-time properties, we get the following system of equations 
for the neutrino field potentials: 

 

 

1 0,

1 0,

0,

1 0,

1 0,

0.

A
c t

A
c t

A

A
c t

A
c t

A


























   




 


   


  



 


   















     (7.13) 

Thus, based on analogy with the electromagnetic and gravitational fields (comaring equations 
(4.4) and (7.6)) one can assume that the generalized equation (7.5) describes the special field of a 
gravitoelectromagnetic nature. The potentials   and A


 describe the electromagnetic component, 

while the potentials   and A


 describe the gravitational component of the neutrino field. Below 

we will assume that potentials   and A


 contain 1ε  unit, while   and A


 contain 2ε  unit. 
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8. Second-order relations for neutrino field 
 
Multiplying the expression (7.5) on potential 

W  from the left, we obtain the following 
sedeonic equation: 

    1 0.i A i i A
c t    
       

t r t r t re e e e e e
 

   (8.1) 

Performing the sedeonic multiplication and separating different terms we get second order 
expressions for the neutrino field potentials: 

   2 21 0,
2

A A
c t     

    


 
     (8.2) 

  0A A     
 

,       (8.3) 

1 0AA A A
c t


     

                


   

,    (8.4) 

     2 21 1 0.
2

A A A A
c t       

      


    
   (8.5) 

Separating the real and imaginary parts and excluding the cross-terms (taking into account  
that 01 2ε ε ) we get following four equations: 

      2 2 2 21 0,
2

A A A A
c t           

        


    
   (8.6) 

   
    

2 2 2 21 1
2

0,

A A A A
c t

A A A A

       

   

   


     


    

   

         (8.7) 

    0,A A A A              
    

      (8.8) 

 

1

0.

AAA A
c t t

A A A A


 

          

                

                      


 

      
  (8.9) 

On the other hand, multiplying the expression (7.5) on  i A  t re e


 from the left, we obtain 

the following sedeonic equation: 

   1 0.i A i i A
c t    
        

t r t r t re e e e e e
 

    (8.10) 

Performing the sedeonic multiplication and separating different terms we get following expressions 

     2 21 0,
2

A A A
c t        

      


   
    (8.11) 

  0,A A     
 

        (8.12) 
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1 0,AA A
c t


  

          


 

      (8.13) 

   2 21 1 0.
2

A A A A A
c t t

 
     


 
             


    

   (8.14) 

Separating the real and imaginary parts and excluding the cross-terms we get another four 
equations: 

 
        

2 2 2 21
2

0,

A A
c t

A A A A

   

       

 

   


  



        

 

          (8.15) 

 

    

2 2 2 21 1
2

0,

AAA A A A
c t t t t

A A A A

  
       

   


   

                 

      


   

    
 (8.16) 

    0,A A A A              
    

      (8.17) 

 1 0.
AAA A A A

c t t


      
                             


    

  (8.18) 

The expressions (8.6), (8.7), (8.15) and (8.16) are the analogs of Poynting theorem and Lorentz 
invariants relations for the neutrino field. 
 
9. Summary 
 

Thus in this paper we have developed the description of massless fields on the basis of space-
time algebra of sixteen-component sedeons. The generalized sedeonic second-order equation for 
unified gravitoelectromagnetic field describing simultaneously gravity and electromagnetism was 
proposed. We have derived the relations for energy, momentum and Lorentz invariants of unified 
GE field. Besides, we considered the generalized sedeonic first-order equation for the neutrino field. 
Using the analogy with the GE field one can assume that this equation describes the 
electromagnetic and gravitational components of the neutrino field. The second-order relations for 
the neutrino potentials (analogs of Pointing theorem and Lorentz invariants relations for GE field) 
were also derived. 
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