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Hysteresis model with dipole interaction: Devil’s staircase like shape of the magnetization curve

A. A. Fraerman and M. V. Sapozhnikov*
Russian Academy of Science, Institute for Physics of Microstructures, GSP-105, Nizhny Novgorod 603600, Russia

~Received 11 May 2001; revised manuscript received 5 February 2002; published 10 May 2002!

Magnetic properties of two-dimensional~2D! systems of magnetic nanoobjects~2D regular lattices of
magnetic nanoparticles or magnetic nanostripes! are considered. Analytical calculations of the hysteresis curve
of a system with interaction between nanoobjects are provided. It is shown that during a magnetization reversal
the system undergoes a number of metastable states. The kinetic problem of the magnetization reversal was
solved for three models. The following results have been obtained:~1! for a 1D system (T50) with a
long-range interaction with the energy proportional tor 2p, a staircaselike shape of the magnetization curve has
a self-similar character~complete ‘‘devil’s staircase’’!. The nature of the steps is determined by the interplay of
the interparticle interaction and the coercivity of a single nanoparticle;~2! The influence of thermal fluctuations
on the kinetic process was examined in the framework of the nearest-neighbor interaction model. The thermal
fluctuations lead to additional splitting of the steps on the magnetization curve. The influence of the coercivity
dispersion in the system is also discussed. A simple method to experimentally distinguish the influence of
interaction from the coercivity dispersion on the magnetization curve is proposed.

DOI: 10.1103/PhysRevB.65.184433 PACS number~s!: 75.60.Jk, 75.75.1a
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I. INTRODUCTION

The properties of magnetic nanoobjects and their syst
are of active research interest currently owing to the
vances in the technology for their fabrication and measu
ments. The possible applications of such systems are m
netic random access memory1 or high-resolution magnetic
field sensors.2 Fundamental interest concerns t
understanding of the magnetic behavior of both individ
nanoparticles and of arrays of interacting particles. This
derstanding is necessary to develop any system suitable
technological applications. Many of the magnetic nanos
tems under experimental investigation belong to the grou
easy axis systems.

What is the main common feature of such magnetic s
tems from the theoretical point of view? First, they all co
sist of magnetic coercive objects: systems of magnetic na
particles with a perpendicular single-particle anisotrop3

chains of magnetic nanoparticles, which have the effec
anisotropy axis along the chain due to interparticle dipo
dipole interaction;4 magnetic nanostripes having a for
anisotropy.5 Second, the process of magnetization reversa
these systems has a thermoactivated nature. For exampl
magnetization process in an individual magnetic nanost
proceeds by nucleation-propagation mechanism.6 The propa-
gation of the nucleus is very fast. Numerical simulatio
demonstrate that in a one-dimensional~1D! chain of mag-
netic nanoparticles the magnetization reversal proce
through nucleation and followed by propagation of the d
main wall.7 Both a magnetic nanostripe and a chain of ma
netic nanoparticles have two stable states with the magn
zation directed along the stripe or the chain. A nanopart
with the perpendicular anisotropy axis also has two sta
states and the magnetization reversal in a particle has a
moactivated nature.8 Besides, there is a long-range inte
action in the systems of such magnetic nanoobjects, wh
has a magnetostatic nature. In the case of arrays of mag
particles with anisotropy perpendicular to the array pla
0163-1829/2002/65~18!/184433~8!/$20.00 65 1844
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the interaction is of effective antiferromagnetic type. Its e
ergy is

Ei j 5
M ~r i !M ~r j !

ur i j u3
. ~1!

Here M (r i) is the magnetic moment of a particle,r i j is the
interparticle distance. In a system of magnetic nanostri
the magnetostatic interaction is also long range. It is cau
by magnetic charges appearing on the edges of a stripe in
magnetized state. The dependence of the interaction en
on the interstripe distance is defined as

Estripe52
M ~r i !M ~r j !

L2 S 1

r i j
2

1

Ar i j
2 1L2D , ~2!

whereM (r i) is the magnetic moment of a stripe,r i , j is the
interstripe distance, andL is the length of the stripes.E is
proportional tor 21 for the neighboring stripes,E;r 23 for
long distances.

Another system of those mentioned above is a 2D rec
gular lattice of magnetic nanoparticles with a single-parti
anisotropy of the ‘‘easy-plane’’ type. In this case the partic
form chains lying along the short side of an elementary re
angle. Due to anisotropy of the dipole interaction, the m
netization of a chain is directed along the chain. The ene
of the interchain interaction includes the part~2! connected
with the existence of magnetic charges on the chain ed
and the other part caused by a discrete nature of the chain9,10

Ediscr5
8p2M ~r i !M ~r j !/La2

Ar i j /a
exp~22pr i j /a!. ~3!

Here M (r i) is the magnetic moment of a chain,a is the
interparticle~within a chain! distance,r i j is the distance be-
tween the chains, andL is their length. The relation
Ediscr /Estripe is proportional to the chain length. So fo
©2002 The American Physical Society33-1
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rather long chains the nearest-neighbor interaction play
leading role.9 The type of the interaction is antiferromagne
too.

Some attempts were made to solve the problem of
magnetization process in a coercive system with interac
by the numerical methods.11–13 It was found that the magne
tization curves look like a staircase with the steps of differ
widths. First experimental observation of such steps is
ported in Ref. 11.

In our work we present an analytical investigation of t
problem of magnetization process in a system of coerc
easy-axis nanomagnets. In Sec. II, we examine a 1D m
of a system of 2N magnetic moments with coercivity an
long-range interaction decaying at the rate of 1/r p. This
model corresponds to the system of magnetic nanostri
We use the cyclic boundary conditions. It is shown that
magnetization curve consists of a series of steps corresp
ing to formation of superstructures. In the caseN→` this
staircaselike curve becomes self-similar~complete ‘‘devil’s
staircase’’!. The method used for the solution can be eas
generalized for the case of a 2D square lattice of the m
netic nanoparticles with a perpendicular single-particle
isotropy. In Sec. III, we solve the problem for a 1D syste
with the nearest-neighbor antiferromagnetic interaction
single object coercivity at finite temperature. The influen
of thermal fluctuations on the magnetization process
scribed in the preceding section is also discussed there.
shown that defects arising in the superstructures lead to s
ting of the steps on the magnetization curve. The influenc
the coercivity dispersion is also discussed. A very e
method to estimate the contribution of the interaction a
coercivity dispersion in the magnetic properties of the s
tem is proposed.

II. THE MODEL WITH A LONG-RANGE INTERACTION:
DEVIL’S STAIRCASE

Let us consider a 1D system of long-range interact
coercive magnetic moments. This model is appropriate fo
array of finite length magnetic nanostripes or chains of m
netic nanoparticles. There is an effective antiferromagn
interaction of a magnetostatic nature between the stripes
consider its energy in the dimensionless form,

e5
I

uk2nup
sksn , ~4!

where sk561 are the interacting magnetic moments,n
and k are the numbers of the magnetic-moment positio
andI is the dimensionless constant of the effective antifer
magnetic interaction (I .0). The nearest-neighbor distanc
is equal to 1. Let the system be originally magnetized so
all sk521. The coercivity is considered to be the same
every magnetic moment in the system. The magnetiza
reversal in a totally magnetized system begins when the fi
at the place of some magnetic moment exceeds the coerc
of that moment. This critical value is
18443
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H15Hc22I j~p!, j~p!5 (
k51

N
1

kp
, ~5!

in the case of the infinite chain. HereHc is the coercivity and
it is the same for all magnetic moments. The second term
the field originated at the place of one magnetic moment
all other magnetic moments. In a similar way it can be eas
calculated that the reversal ends at the external field val

H25Hc12I j~p!, ~6!

when the last magnetic moment is reversed.H2 is greater
thanH1 due to the antiferromagnetic interaction in the sy
tem. It is interesting to investigate the magnetization curve
the regionH1,H,H2. As the system is one dimensional, i
ground state is disordered. Here we will consider the te
peratures less than the coercivity (kT,MHc), then the sys-
tem can have a number of metastable states. There are 2n (n
is the number of the magnetic moments! metastable states a
a zero external field if the interaction energy in the system
less than the energy of coercivity.

If the coercivity in a system is small (kT@MHc) there
are no metastable states in the system, as the fluctuation
higher than the barrier between states. There is only
stable state in this case. It is a ground state. So if we cha
the external magnetic field the system will consequently p
through a series of ground states. The ground state is to
magnetized~i.e., all magnetic moments are directed alo
the external field! if the field is less than22I j(p) or larger
than 2I j(p). It is also possible to find the values of th
magnetization of the ground states corresponding to the
ternal field in the interval22I j(p),H,2I j(p). This ther-
modynamic problem was solved in Ref. 14. It was obtain
that the magnetization curve has steps and looks like a s
similar devil’s staircase in this case.

Here we solve the problem for the case whenkT is less
than any energy in the system. So the system can be in m
stable states and the problem of the magnetization reve
cannot be solved by thermodynamic methods. We have
solve the kinetic problem by a correct choice of the seque
of metastable states the system undergoes when it is ma
tized. Such a choice becomes easier if the system consis
an absolutely even number (N52n) of magnetic moments
and has cyclic boundary conditions.

So, magnetization reversal begins when the external fi
exceedsH1 ~5!. Due to fluctuations the place of the firs
reversed magnetic moment can be chosen arbitrarily. S
interaction here is of the antiferromagnetic type, the exter
field has to be increased additionally to reverse second m
netic moment. As the interaction decreases with distance
second reversed magnetic moment must be chosen as f
possible from the first one. It is very easy to choose t
place for the system with cyclic boundary conditions@Fig.
1~A!#. In this case the magnetization proceeds through a
quential formation of different superstructures@Fig. 1~B!#
that are metastable states. Let us calculate the field va
when some superstructure appears (H2) and becomes un
stable (H1). At first, we consider only superstructures wi
periods m52k, k50,1,2, . . . and onereversed magnetic
moment per period@such as in Figs. 1~b!, 1~c!, and 1~e!#.
k50 corresponds to the saturated state. The field, when
superstructure with the period equal tom is formed~Fig. 2!,

is described as

3-2
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HYSTERESIS MODEL WITH DIPOLE INTERACTION: . . . PHYSICAL REVIEW B 65 184433
H2~m!5Hc12I
j~p!

mp
2S 2I j~p!22I

j~p!

mp D
5Hc22I j~p!14I

j~p!

mp
. ~7!

Here the second term defines the fields of the magnetic
ments that have been already reversed. They prevent the
sen magnetic moment from reversal. The term in bracke
the field of other nonreversed magnetic moments. These

FIG. 1. The reversal process in the cyclic system of eight m
netic moments and the corresponding superstructures in the in
system. White arrows are for nonreversed magnetic moments; b
arrows denote the already reversed ones. The external field
creases from~a! to ~e!. ~A! The reversal process in the cyclic syste
of eight magnetic moments and~B! the corresponding superstruc
tures in the infinite system.

FIG. 2. The process of formation and a following destruction
the superstructure with the periodm54. White arrows are for non-
reversed magnetic moments; black arrows denote the alread
versed ones.H2 is the field when the magnetic moment in the po
a becomes unstable and the formation of the superstructure t
place.H1 is the field when the magnetic moments of the pointb
become unstable. Due to fluctuations one of them reverses firs
then prevents others from reversal due to long-range antiferrom
netic interaction.
18443
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the chosen magnetic moment to reverse. In a similar way,
can find the field when the superstructure with the periodm
becomes unstable~Fig. 2!;

H1~m!5Hc12I
~2p21!j~p!

mp

2S 2I j~p!22I
~2p21!j~p!

mp D
5Hc22I j~p!14I

~2p21!j~p!

mp
. ~8!

Here we use the relation

(
n51

`
1

~n/2!p
5 (

n51

`
1

~n11/2!p
1 (

n51

`
1

np
. ~9!

Magnetization of the entire system is determined by the
perstructure period and is defined as

M5 lim
N→`

1

2N (
k51

`

sk5
22m

m
. ~10!

So there must be steps on the magnetization curve co
sponding to stable superstructures, as the magnetization
not change whereas the magnetic field increases f
H2(m) to H1(m). Using Eqs.~7!,~8!, and~10!, we can re-
write the dependence of the step edges~Fig. 3! in the form

H25Hc22I j~p!14I j~p!S M11

2 D p

, ~11!

H15Hc22I j~p!14I ~2p21!j~p!S M11

2 D p

. ~12!

The steps corresponding to the above superstructures
not cover all of the field values between valuesH1 andH2
~Fig. 3!. To understand the magnetization behavior of t
system in transition from one step to another we must t
into account the formation of more complex superstructu
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f
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FIG. 3. The steps on the magnetization curve correspondin
simple superstructures (m52k) with one reversed magnetic mo
ment per period. Magnetization of the corresponding step isM
5(22m)/m52111/2k21.
3-3
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@Fig. 1~d!#. Let us consider, for example, the magnetizati
process betweenH1(m52) andH2 ~Fig. 3!, that is, how an
antiferromagnetic superstructure becomes saturated. Th
perstructures with periodsm252,4, . . . ,2l ( l 51,2, . . . ) ap-
pearing with the antiferromagnetic one (m152) as a back-
ground are presented in Fig. 4 (m152,m252 is the saturated
state,m152,m25` is the antiferromagnetic superstructure!.
In this caseM52/m2. The expressions for the magnet
fields H2(m2) and H1(m2) differ from such expression
~12!,~11! for simple superstructures. We must take into a
count the field of the antiferromagnetic background affect
the reversing magnetic moment in this case. This additio
field is

H52I
~2p21!j~p!

m1
p

52I
~2p21!j~p!

2p
. ~13!

We must take this field into account twice, as formerly it w
directed along the external field but now it is directed aga
it. So we have

H2~m2!5Hc22I j~p!14I j~p!S M

2 D p

14I
~2p21!j~p!

2p
,

~14!

H1~m2!5Hc22I j~p!14I ~2p21!j~p!S M

2 D p

14I
~2p21!j~p!

2p
. ~15!

It is obvious that Eqs.~14! and ~15! are nearly identical to
Eqs. ~11! and ~12!, but now the curves start at the pointM
50, H5H1(m152)5Hc22I j(p)14I @(2p21)j(p)/2p#,
which is the right edge of the step corresponding to the
tiferromagnetic structure, instead ofM521, H5H15Hc
22I j(p) ~see Fig. 5!. All other steps on the magnetizatio
curve can be obtained in a similar way. Each step co
sponding to some superstructure is a base of a series of s
corresponding to more complex superstructures with the
one as the background. The dependences ofH2 andH1 in
all cases are similar, andH6;M p. So the picture become
self-similar ~Fig. 5!. Complex superstructures are charact
ized by a series of numbersm1 ,m2 ,m3 , . . . ,mmax, where
mi52k and mi,mi 11. The maximal numbermmax is the

FIG. 4. ~a! Simple superstructures (m1 is a period!. White ar-
rows are for nonreversed magnetic moments; black arrows de
the already reversed ones.~b! Complex superstructures characte
ized by two numbers,m1 andm2. Small arrows denote the antife
romagnetic background, big arrows indicate the reversed mag
moments forming a period of a superstructure.
18443
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period of a superstructure, wherem1 ,m2 , . . . ,mmax21 char-
acterize its background. Narrow steps are between the w
ones. Let us find the total of all steps. A step width can
easily calculated as

DH5H1~m!2H2~m!54I
~2p22!

mmax
p

j~p!. ~16!

The number of steps of the same width depends onmmax and
N5mmax/2. The total width is

DH5 (
n even

`

N~n!DH~n!

5 (
n even

`
n

2
4I

~2p22!

np
j~p!

54I j~p!(
k51

`

2k21
~2p22!

2kp

52I j~p!~2p22!(
k51

` S 1

2p21D k

52I j~p!~2p22!
~1/2!p21

12~1/2!p21
54I j~p!. ~17!

The sum of the widths over all steps is exactly the same
the width of the slope part of the magnetization curve, wh
is equal to 4I j(p) according to Eqs.~5! and~6!. So the dev-
il’s staircase in question is complete as the whole interva
H is ‘‘filled up.’’

The difference in the step width is connected with t
decaying long-range interaction~4!. The wider steps are
caused by the interaction of nearer magnetic moments;
narrow ones are caused by the interaction of more dis
magnetic moments.

The magnetization values corresponding to the steps

M5
4k22

mmax
21, ~18!

te

tic

FIG. 5. The self-similar devil’s staircase.
3-4
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wherek51,2, . . . ,mmax/2.
It is interesting that the exponent in Eqs.~11! and ~12! is

equal to the power index in the expression for the interac
~4!. So it is possible to find the power index for a long-ran
interaction in a real system by the experimental measurem
of magnetization curves.

There are some reasons for the distortion of the ideal
ture considered above. First, it is thermal fluctuations.
kT.Eint(r ) at long distances, it leads to distortion and d
appearance of the narrow steps that are conditioned by
interaction of distant magnetic moments. Besides, ther
fluctuations may give rise to defects in the superstructu
This will be discussed in the following section. The seco
reason behind the distortion of the ideal magnetization cu
is that a real system has bounds. They can play a signifi
role, as the interaction is long range. Nevertheless, if
dimension of the system is larger than somer 0 @kT
5Eint(r 0)#, the influence of the bounds will be neglected
thermal fluctuations. Finally, the dispersion of the coerciv
of different magnetic moments can dramatically change
magnetization curve. Such self-similar behavior can be
served only in the system with small~less than interaction!
coercivity dispersion. The method how to distinguish b
tween the influence of the interaction and coercivity disp
sion in a possible experiment is discussed in the last sec

In spite of all deficiencies of the proposed model it he
to understand the peculiarities of the magnetization proc
in the system of coercive magnetic moments with inter
tion, the nature of the steps on the magnetization curve11,13,15

and especially the fact that the difference in the step wid
is a consequence of the decaying long-range interactio
also explains the fact of alternation of the narrow and w
steps on the magnetization curve.11,13 It is very likely that in
the general case the magnetization curve has a self-sim
character too. The presented model can be easily genera
for the case of a 2D square lattice of interacting magn
nanoparticles with a perpendicular anisotropy. In this c
one must carry out the summation of the dipole sums for
corresponding superstructures on a square lattice. The s
structures must have a square elementary cell in this cas
the dipole sums can be easily calculated.16

III. THE NEAREST-NEIGHBOR MODEL:
THERMAL FLUCTUATIONS

Let us consider a magnetization process at a finite t
perature less than the coercive energy of a single magn
moment (kT,HcM ) but higher than the interaction energ
of widely spaced magnetic moments. In this case the m
netic moments at distances larger than somer 0 @kT
5E(r 0)# begin to reverse independently as the energy
their interaction is smaller than the temperature. Nevert
less, the system can be in metastable states askT,HcM .
The kinetics of the magnetization process can in this cas
qualitatively described as follows. When the external m
netic field exceeds some value (H1), a thermoactivated re
versal of individual magnetic moments begins. But the m
netic moments that were the first to reverse prevent
neighboring ones~lying at distances smaller thanr 0) from
18443
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reversal due to effective antiferromagnetic interaction. Ho
ever, more widely spaced magnetic moments can revers
their interaction energy in this case is smaller than tempe
ture. The magnetization process is of the Poisson type
ends when the distance between the neighboring reve
magnetic moments is in the intervalr 0,r ,2r 0. An addi-
tional external field is necessary to overcome the antife
magnetic interaction and to continue the reversal process
thermal fluctuations will lead to distortion of the ideal pictu
described in the preceding section. It is difficult to take th
mal fluctuations into account in the general case. Here
have solved the problem for the situation when the tempe
ture is larger than energy of any interaction in the syst
except that for the most powerful nearest-neighbor inter
tion. In this case the problem can be solved in the near
neighbor approximation@p5` in Eq. ~4!#. This model is
also appropriate for a planar system of long chains of m
netic nanoparticles when the main term in the interaction
interaction of the nearest neighbors~3!. The magnetization of
the chains is directed along them due to effective anisotr
of a magnetostatic nature. The form of the hysteresis in
case is shown in Fig. 6. The magnetization reversal start
the field valueH15Hc22I , as the antiferromagnetic inter
action helps the external field. The magnetic moments be
to reverse the magnetization due to thermal fluctuations.
if one magnetic moment reverses, it prevents the neighbo
ones from being reversed as the effective field of the in
action is opposite to the external field. A chaotic pattern
the magnetization reversals may cause formation of def
~Fig. 7!. So, it is impossible to reach the antiferromagne
state withM50 at this value of the external field. An add
tional external field (H5Hc) is necessary to reverse the d
fects. Then defects change their sign~Fig. 7!.

The magnetization reversal ends at the fieldH25Hc

FIG. 6. The hysteresis loop in the case of the nearest-neigh
interaction.~a! At T50 the step corresponds to antiferromagne
cally ordered superstructure.~b! The step is split into two steps du
to formation of defects by thermal fluctuations.Mst is the step
height.

FIG. 7. ~a! Defects appearing due to Poisson type of magn
zation process and~b! reversed defects. White arrows are for no
reversed magnetic moments; black arrows denote the alread
versed ones.
3-5
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12I when the system becomes totally magnetized. So,
steps appear on each branch of the hysteresis loop. T
width is DH52I , i.e., it depends on the interaction valu
The magnetization valueMst corresponding to the step de
pends on concentration of the defects. It is a special prob
to find this concentration. Let us consider the kinetics of
appearance of the defects in a 1D system ofN magnetic
moments. First, all magnetic moments are magneti
against external magnetic field (sk521). When a reversa
process begins, the reversed magnetic moments begin t
vide the system into regions of yet nonreversed magn
moments~we will refer to them as ‘‘domains’’!. In the pro-
cess of magnetization reversal the number of domains
creases and their widths decrease. LetPn be the number of
domains consisting ofn nonreversed magnetic moment
Then

M5 (
n51

N22

Pn2 (
n51

N22

nPn . ~19!

Let a be the probability of reversal of some magnetic m
ment per unit time. As all magnetic moments have the sa
coercivity, a is independent of the position of a magne
moment and equal for all the magnetic moments that do
have reversed neighbors. For all the magnetic moments
have reversed neighborsa50. As the interaction is of the
nearest-neighbor type,a does not depend on a configuratio
of the system. The value ofa depends on micromagneti
properties of objects represented by the magnetic mom
in our model. Nevertheless, this value does not affect
final result~29!. So

]Pn

]t
52a~n22!Pn12a (

k5n12

N

Pk , n.2. ~20!

The first term defines a decrease of the number of
mains due to their division into smaller ones; the seco
term describes the appearance of new domains due to
sion of the wider ones. As domains consisting of one or t
nonreversed magnetic moments cannot be divided furt
they only increase in number. So

]Pn

]t
52a (

k5n12

N

Pk , n51,2. ~21!

It is obvious thata depends on temperature, but as we
seeking for the states stable att→`, a does not affect the
final result. It can be easily checked, that

]

]t (
n51

N

~n11!Pn50, ~22!

i.e., the whole number of magnetic moments in the system
constant. In the course of time (at@1) only the domains
with n51,2 remain. SoPn(t→`)50 for n.2 and the mag-
netization value corresponding to the step~Fig. 6! is propor-
tional to the concentration of the defects. SoM52P2(t
→`). We now use the Laplace transformation and defin
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pn~s!5E
0

`

Pn~ t !e2stdt. ~23!

Then, according to~20!,

pn~s!5
2a

a~n22!1s
Qn~s!, ~24!

where

Qn~s!5 (
k5n12

N

pk~s!. ~25!

For s→0

Qn~0!5 (
k5n12

N

pk~0!5 (
k5n12

N
2

k22
Qk~0!. ~26!

In the recursive form this equation can be written as

Qn~0!5Qn11~0!1
2

n
Qn12~0!. ~27!

To find the magnetization value corresponding to the ste
is necessary to calculateP2(t→`). It is obvious that

P2~ t→`!5 lim
s→0

sp2~s!52aQ2~0!. ~28!

If the maximum number of the magnetic moments in t
system isN, Q2(0) can be found from Eq.~27! with the
initial conditions QN225QN235pN(0), which are the se-
quence of Eq.~25!. In its turnpN(0)51/a(N22), according
to Eq.~20!. The solution of the recursive equation was fou
numerically as

Mst52a lim
N→`

Q2~0,N!

N
'0.134. ~29!

As Q2(0,N) is proportional toa21, the result does not de
pend on the value ofa. So the formation of defects during
magnetization process leads to appearance of two steps~in-
stead of one, Fig. 6! on the magnetization curve in the ca
of the nearest-neighbor interaction. Due to fluctuating nat
of the magnetization process the antiferromagnetic gro
state~if H50) cannot be achieved. One may expect that
the case of long-range interaction thermal fluctuations w
lead to similar splitting of steps on the magnetization cur

IV. DISCUSSION

By means of simple models we have investigated
magnetization processes in the systems of coercive mag
objects with interaction. The reason behind the formation
steps on the magnetization curve is investigated. It is sho
that the magnetization curve can have a self-similar nat
Its form is calculated in the case of long-range interact
with E;1/r p. The suggested model explains the nature
the steps and especially the fact of the alternation of w
and narrow steps on magnetization curves observed
experimentally11 and by numerical simulations.13,17 The in-
3-6
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fluence of the thermal fluctuations is analyzed in the fram
work of the nearest-neighbor approximation. It is shown t
fluctuations lead to splitting of the steps on the magnetiza
curve.

Let us estimate values of fields of a magnetostatic in
action and possible widths of steps on magnetization cu
in experimentally studied magnetic nanosystems, such
those represented in Refs. 3,4 and 5. The best syste
investigate multiple steps is rectangular lattices of magn
nanoparticles~pillars! with a perpendicular anisotropy. Fo
example, for usual parameters of this systems~Ni pillars 110
nm in diameter, 240 nm in height, and 190 nm of latti
period! the nearest-neighbor interaction according to Eq.~1!
will be approximately 200 Oe. So the widths of the main a
second step can be estimated by Eq.~16! as 600 Oe and 75
Oe, respectively. Actually these will be less due to discus
effect of splitting. This splitting can also be observed f
rectangular lattices of the magnetic nanoparticles with
plane anisotropy. For the particles with dimensions equa
interparticle spacing, formula~3! gets the following estima-
tion for a field of a magnetostatic interaction between cha
of the particles:

H5
p2M

Ab
@exp~22p!#bn. ~30!

Hereb is aspect ratio,M is magnetization of particle, an
n is the number of neighbors. So for usual materials wit
magnetization of 1000 Gs and small aspect ratios of a latt
Hint is approximately 20 Oe for the nearest-neighbor cha
and 0.04 Oe for the second neighbor. Such system ca
considered as a system with nearest-neighbor interac
The width of two splitting steps can be estimated as 40

But besides long-range interaction there can be ano
reason for the steps on a magnetization curve. Namely,
dispersion of the coercivity of different magnetic moments
the system~even without any interaction! leads to appear
ance of steps on magnetization curve. How can one dis
guish between these effects? As a matter of fact, underst
ing of their difference is very important to interpret expe
mental data.

To understand the situation we have considered the s
plest model of interacting magnetic moments with dispers
of their coercivity in the mean-field approximation. With
this model the interaction is independent of distance ane
5I /N. It should be mentioned that this model is appropri
in the case of very long stripes whenL.Na (L is the stripe
length,a is the interstripe distance, andN is the whole num-
ber of stripes!. Let us examine a hysteresis loop for the sy
tem without coercivity dispersion. The dependence of
magnetization on an external field is linear in this case, a

H5Hc1JM. ~31!

Hc is the coercivity,JM is the field of interaction in the
mean-field approximation. There is a slope of the branche
the magnetization curve@Fig. 8~a!# instead of steps in the
case of an infinite system. The main feature of a magnet
tion process in a coercive system with antiferromagnetic
18443
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teraction is connected with multistability of the system.
means that, if we change the sign of the changing exte
field, the system does not change its magnetization imm
ately. First, it transits through the whole hysteresis loop fr
one branch to the other@from point A to point B, Fig. 8~a!#,
and then begins to change its magnetization according to
new branch. In this caseuHA2HBu52Hc . It should be noted
that such multistable behavior does not depend on the in
action manner. It is the same in the case of long-range
caying interaction~Sec. II! or the nearest-neighbor one~Sec.
III !. The same multistability was obtained by numeric
simulation.17 So different states of the system~characterized
by the different magnetizations! correspond to the sam
value of the external field. We will refer to such multistab
ity as interaction-type (I -type! multistability, because multi-
stability can exist in a system of noninteracting magne
moments with different values of coercivity also. In this ca
magnetization reversal begins when the field reaches
value H15HCmin , when the reversal of the magnetic m
ments with the smallest coercivity starts. The reversal p
cess is finished at the field valueH25HCmax, corresponding
to the largest coercivity in the system. The hysteresis loop
this case is similar to the one for the system with interact
~as its branches can have a similar slope in the case
DHc52I and a uniform distribution ofHc), but the transi-
tions inside the loop differ. If we change the direction of t
reversal process in pointA ~Fig. 8! in this case, the magne
tization does not change until the external field reaches
value of 2H1 when the reversal of the magnetic momen
with the smallest coercivity happens. We will refer to su
multistability as coercivity-type (C-type!. The hysteresis

FIG. 8. The hysteresis curve in the mean field approximati
~a! for the system with interaction with the same coercivity of a
magnetic moment;~b! for the coercivity dispersion~uniform distri-
bution of the coercivity! and without interaction; and~c! for the
system with both interaction and coercivity dispersion.
3-7



is
Fi
th

io
bil
io
th

ys

ul

-
, of

ul
un-

ik

B
J

d,

S.

J.

i-
ro

u

.
Zh

.
n
Y

hy

.

z,

u-

r-

z.

it-

ez,

s.

M.

er.

.
-
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loop of the system with both interaction and coercivity d
persion can be easily calculated too. It is presented in
8~c!. So one can distinguish between the interaction and
coercivity dispersion by the behavior of the magnetizat
within the hysteresis loop and by analysis of the multista
ity type of the system. We believe that a self-similar behav
of the magnetization can be experimentally observed in
systems with a small dispersion of coercivity, that is, in s
tems that demonstrate theI-type of multistability. Note that
in the experimental works we know on the type of the m

*Email addresses: msap@ipm.sci-nnov.ru and sapozhn
@anl.gov

1S. S. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R.
Bayers, R. E. Scheuerlein, E. J. O. Sullivan, S. L. Brown,
Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouillou
R. A. Wanner, and W. J. Gallagher, J. Appl. Phys.85, 5828
~1999!.

2J. N. Chapman, R. P. Aitchison, K. J. Kirk, S. McVitie, J. C.
Kools, and M. F. Gillies, J. Appl. Phys.83, 5321~1998!.

3M. Hwang, M. C. Abraham, T. A. Savas, Henry I. Smith, R.
Ram, and C. A. Ross, J. Appl. Phys.87, 5108 ~2000!; M. Far-
houd, H. I. Smith, M. Hwang, and C. A. Ross,ibid. 87, 5120
~2000!; Chiseki Haginoya, Seiji Heike, Masayoshi Ishibashi, K
mio Nakamura, Kazuyuki Koike, Tashiyuki Yoshimura, Ji
Yamamoto, and Yoshiyuki Hirayama,ibid. 85, 8327~1999!; Bo
Cui, Wei Wu, Linshu Kong, Xiaoyun Sun, and Stephen Y. Cho
ibid. 85, 5534~1999!.

4S. A. Gusev, L. A. Mazo, I. M. Nefedov, Yu. N. Nozdrin, M. V
Sapozhnikov, L. V. Suhodoev, and A. A. Fraerman, Pis’ma
Eksp. Teor. Fiz.68, 475 ~1998! @JETP Lett.68, 509 ~1998!#; R.
P. Cowburn, A. O. Adeyeye, and M. E. Welland, New J. Phys1,
16.1 ~1999!; J. I. Martin, J. Nogues, Ivan K. Schuller, M. J. Va
Bael, K. Temst, C. Van Haesendonck, V. V. Moshchalkov, and
Bruynseraede, Appl. Phys. Lett.72, 255~1998!; Akira Sugawara
and M. R. Scheinfein, Phys. Rev. B56, R8499 ~1997!; Akira
Sugawara, G. G. Hembree, and M. R. Scheinfein, J. Appl. P
82, 5662~1997!.

5J. Hauschild, H. J. Elmers, and U. Gradmann, Phys. Rev. B57,
R677 ~1998!; A. O. Adeyeye, G. Lauhoff, J. A. C. Bland, C
18443
-
g.
e

n
-
r
e
-

-

tistability, this behavior is not examined in spite of the sim
plicity, on one hand, and significance, on the other hand
such investigation.

ACKNOWLEDGMENTS

We are grateful to Professor A. A. Andronov for helpf
discussions. The work was supported by the Russian Fo
dation for Fundamental Research~N 00-02-16485!.

ov

.

.

,

.

.

s.

Daboo, D. G. Hasko, and H. Ahmed, Appl. Phys. Lett.70, 1046
~1997!.

6A. Zhukov, M. Vazquez, A. Hernando, V. Larin, and J. Velazque
J. Magn. Magn. Mater.170, 323 ~1997!; S. Pignard, G. Goglio,
A. Radulescu, L. Piraux, S. Dubois, A. Declemy, and J. L. D
vail, J. Appl. Phys.87, 824 ~2000!.

7I. R. Karetnikova, I. M. Nefedov, M. V. Sapozhnikov, A. A. Frae
man, and I. A. Shereshevski, Fizika Tverdogo Tela43, 2030
~2001! @ Phys. Solid State43, 2115~2001!#.

8H.-B. Braun, Phys. Rev. Lett.71, 3557~1993!.
9M. Gross and S. Kiskamp, Phys. Rev. Lett.79, 2566~1997!.

10V. M. Rozenbaum, V. M. Ogenko, and A. A. Chuiko, Usp. Fi
Nauk 161, 79 ~1991! @Sov. Phys. Usp.34, 883 ~1991!#.

11D. Grundler, G. Meier, K.-B. Brooks, Ch. Heyn, and D. He
mann, J. Appl. Phys.85, 6175~1999!.

12J. M. Gonzalez, O. A. Chubykalo, A. Hernando, and M. Vazqu
J. Appl. Phys.83, 7393~1998!.

13G. Brown, M. A. Novotny, and Per Arne Rikvold, J. Appl. Phy
87, 4792~2000!.

14P. Bak and R. Bruinsma, Phys. Rev. Lett.49, 249 ~1982!; P. Bak,
Rep. Prog. Phys.45, 587 ~1982!.

15L. C. Sampaio, E. H. C. P. Sinnecker, G. R. C. Cernicchiaro,
Knobel, M. Vazquez, and J. Velazquez, Phys. Rev. B61, 8976
~2000!.

16A. A. Fraerman and M. V. Sapozhnikov, J. Magn. Magn. Mat
192, 191 ~1999!.

17A. A. Fraerman, S. A. Gusev, I. M. Nefedov, Yu. N. Nozdrin I. R
Karetnikova, L. A. Mazo, M. V. Sapozhnikov, I. A. Shere
shevsky, and L. V. Suhodoev, J. Phys.: Condens. Matter13, 683
~2001!.
3-8


